
Tips & Tricks
Understanding Data Step Processing

M. Brüning – Boehringer Ingelheim Pharma GmbH & Co. KG

KSFE 2022



Agenda

1. • Data Step Processing

2. • Vertical dataset concatenation

3. • Multiple sets 

4. • Many to many relationship

5. • LAG and DIF functions

KSFE 2022 



Data step processing

Data step 
processing consists 

of 2 phases:

Compilation Phase
translation into machine code
scan for syntax errors  
program data vector (PDV)

Execution Phase 

KSFE 2022 



Execution phase

data reading:
Is there a record to  

read?

yes

reads input record

initialize variables to missing 

no closes data set
Next DATA or PROC step

executes additional executable statements

writes an observation to the SAS data set

returns to the beginning of the data step

KSFE 2022 



Program Data Vector - PDV
The Program Data Vector is a logical area of memory that is created during the data step processing. 

SAS builds a SAS dataset by reading one observation at a time into the PDV and, unless given code to do 
otherwise, writes the observation to a target dataset. 

The program data vector contains two types of variables. 

Permanent

• data set variables
• computed variables

automatic variables

_N_: counts the number of 
times the data step begins to 
iterate

_ERROR_: signals the 
occurrence of an error caused 
by the data during execution 

0 = no errors,
1 = one or more errors

Temporary

optional defined variables
e.g. first.by-variable,

last.by-variable,               
in=variable, 
end=variable 

KSFE 2022 



Vertical dataset concatenation
SET  statement with and without BY statement

male: sorted by name female: sorted by name

data male_female;
set male female;

run;

data male_female_by_name;
set male female;
by name;

run;

male_female: sorted by sex, name male_female_by_name: sorted by name

KSFE 2022 



Multiple sets

multiple sets 
• SAS encounters the end of file marker on the smallest file
• reads the first observation from 1st dataset into Program Data Vector (PDV)
• reads the first observation from 2nd dataset into Program Data Vector (PDV)
• SAS overwrites values of common variables from 1st dataset with new values from 2nd

dataset;

male female

data multiple1;
set male; set female;

run;

data multiple2;
set female; set male;

run;

multiple1 multiple2

KSFE 2022 



Multiple sets – PDV - Compilation phase 

male female

data multiple1;
set male; set female;
if sex=„M“ then newvar=1;
if sex=„F“ then newvar=2;

run;

_N_ _ERROR_

1 0

1. SAS creates a PDV containing the automatic variables _N_ and _ERROR_
2. SAS scans each statement for syntax errors e.g. missing semicolons, invalid statements

KSFE 2022 



Multiple sets – PDV - Compilation phase 

male female

data multiple1;
set male; set female;
if sex=„M“ then newar=1;
if sex=„F“ then newar=2;

run;

_N_ _ERROR_ Name Sex Age

1 0

1. SAS creates a PDV containing the automatic variables _N_ and _ERROR_
2. SAS scans each statement for syntax errors e.g. missing semicolons, invalid statements
3. While compiling SAS adds a position to the PDV for each variable

- in the 1st input dataset

KSFE 2022 



Multiple sets – PDV - Compilation phase 

male female

data multiple1;
set male; set female;
if sex=„M“ then newar=1;
if sex=„F“ then newar=2;

run;

_N_ _ERROR_ Name Sex Age Height

1 0

1. SAS creates a PDV containing the automatic variables _N_ and _ERROR_
2. SAS scans each statement for syntax errors e.g. missing semicolons, invalid statements
3. While compiling SAS adds a position to the PDV for each variable

- in the 1st input dataset
- in the 2nd input dataset

KSFE 2022 



Multiple sets – PDV - Compilation phase 

male female

data multiple1;
set male; set female;
if sex=„M“ then newvar=1;
if sex=„F“ then newvar=2;

run;

_N_ _ERROR_ Name Sex Age Height newvar

1 0

1. SAS creates a PDV containing the automatic variables _N_ and _ERROR_
2. SAS scans each statement for syntax errors e.g. missing semicolons, invalid statements
3. While compiling SAS adds a position to the PDV for each variable

- in the 1st input dataset
- in the 2nd input dataset
- that is created in the data step

KSFE 2022 



Multiple sets – PDV - Compilation phase 

male female

data multiple1;
set male; set female;
if sex=„M“ then newvar=1;
if sex=„F“ then newvar=2;

run;

_N_ _ERROR_ Name Sex Age Height newvar

1 0

1. SAS creates a PDV containing the automatic variables _N_ and _ERROR_
2. SAS scans each statement for syntax errors e.g. missing semicolons, invalid statements
3. While compiling SAS adds a position to the PDV for each variable

- in the 1st input dataset
- in the 2nd input dataset
- that is created in the data step

4. SAS completes the compile phase at the bottom of the data step. The output data set does not 
yet contain any observations, because SAS has not yet begun executing the program. KSFE 2022 



Multiple sets – PDV - Execution phase 

male female

data multiple1;
set male; set female;
if sex=„M“ then newvar=1;
if sex=„F“ then newvar=2;

run;

_N_ _ERROR_ Name Sex Age Height newvar

1 0 . . .

1. The data step executes once for each observation in the input data set
2. At the beginning of the execution phase SAS sets all data set variables in the PDV to missing

KSFE 2022 



Multiple sets – PDV - Execution phase 

male female

data multiple1;
set male; set female;
if sex=„M“ then newvar=1;
if sex=„F“ then newvar=2;

run;

_N_ _ERROR_ Name Sex Age Height newvar

1 0 James M 12 . .

1. The data step executes once for each observation in the input data set (5 times for „male“)
2. At the beginning of the execution phase SAS sets all data set variables in the PDV to missing
3. The SET statement reads the first observation and writes the values to the PDV

- 1st dataset

KSFE 2022 



Multiple sets – PDV - Execution phase 

male female

data multiple1;
set male; set female;
if sex=„M“ then newvar=1;
if sex=„F“ then newvar=2;

run;

_N_ _ERROR_ Name Sex Age Height newvar

1 0 Jane F 12 59.8 .

1. The data step executes once for each observation in the input data set (5 times for „male“)
2. At the beginning of the execution phase SAS sets all data set variables in the PDV to missing
3. The SET statement reads the first observation and writes the values to the PDV

- 1st dataset
- 2nd dataset

KSFE 2022 



Multiple sets – PDV - Execution phase 

male female

data multiple1;
set male; set female;
if sex=„M“ then newvar=1;
if sex=„F“ then newvar=2;

run;

_N_ _ERROR_ Name Sex Age Height newvar

1 0 Jane F 12 59.8 2

1. The data step executes once for each observation in the input data set (5 times for „male“)
2. At the beginning of the execution phase SAS sets all data set variables in the PDV to missing
3. The SET statement reads the first observation and writes the values to the PDV

- 1st dataset
- 2nd dataset

4.    The assignment statement executes to compute the first value of „newvar”

KSFE 2022 



Many to many relationship - Execution phase

_N_ _ERROR_ animalno treatdc pardc

1 0 1 A HR
2 0 1 A MAP

3 0 2 A HR

4 0 2 B MAP

treatment paramete
r

data many_to_many_failed;
merge treatment parameter;
by animalno;

run;

!!! merge does not work !!!

NOTE: MERGE statement has more than one data set with repeats of 
BY values.

SAS reads observations sequentially and once an observation is read into the PDV, it is 
never re-read 

KSFE 2022 



Many to many relationship - Execution phase

_N_ _ERROR_ animalno treatdc pardc

1 0 1 A HR

2 0 1 A MAP

3 0 2 A HR

4 0 2 A MAP

6 0 2 B MAP

5 0 2 B HR

Solution with DATA STEP
nobs -> number of observations in the dataset
point -> retrieving the i-th observation

data many_to_many_ok(drop=_animalno);
set treatment;
do i=1 to num; /* nobs=4 in parameter */
set parameter 

(rename=(animalno=_animalno))
nobs = num point = i;

if animalno=_animalno then output;
end;

run;

Solution with PROC SQL

proc sql noprint;
create table many_to_many_sql as
select treatment.*, parameter.pardc
from treatment as t
full join parameter as p
on t.animalno=p.animalno;

quit;

treatment paramete
r

KSFE 2022 



• Each occurrence of a LAGn function generates its own queue
• n is the length of the queue
• the LAG function is executable
• storing values at the bottom of the queue and returning values from the top of the 

queue occurs only when the function is executed
• a LAGn function that is executed conditionally will store and return only values from 

the observations for which the condition is satisfied.

LAG<n>(argument)
• n -> number of lagged values
• argument -> number or character

LAG function
LAG function

KSFE 2022 



LAG function  - DIF function

data lag_dif;
set lag_dif_data;
lag1result = lag(result);  dif1result = dif1(result);
lag2result = lag2(result); dif2result = dif2(result);
lag3result = lag3(result); dif3result = dif3(result);

run;

KSFE 2022 



LAG function - condition
phase

data phase_end_failed;
set phase;
by animalno descending phaseno startdate;

if first.animalno then enddate=.;
else enddate = lag(startdate);

run;

lag within a condition -> only observations which fulfill the condition 
are used for the lag function

What we want to do: each phase 
ends with start of previous phase. 
Calculate end date of all phases 
except last phase. end date of last 
phase is empty

!!! Lag within a condition !!!

KSFE 2022 



LAG function - condition

data phase_end_ok;
set phase;
by animalno descending phaseno startdate;

lagdate = lag(startdate);

if first.animalno then do;
enddate=.;
lagif=lag(startdate);

end;
else  do;
enddate=lagdate;
lagelse=lag(startdate);

end;
run;

if
else
if
else
else

KSFE 2022 



LAG function “looks back”. How to "look ahead“

data phase_end_ok2;
merge phase_ascending

phase_ascending(firstobs=2
rename=(startdate = nextdate)
keep=startdate);

******** no BY statement ********;

run;

data duration2;
set phase_end_ok2;
by animalno;

if not last.animalno then duration = nextdate - startdate; 
run;

MERGE the SAS data set with itself, using a one-on-one MERGE with no BY statement

KSFE 2022 



LAG function – condition:  „if“  and „where“

data phase_end_if;
set phase;
lagdate = lag(startdate);
if animalno=2;
format lagdate date9.;

run;

data phase_end_if;
set phase;
lagdate = lag(startdate);
where animalno=2;
format lagdate date9.;

run;

WHERE is executed
before any observations are read 
into PDV, there are no LAGged
values for the first observation 
selected. 

All observations are read into PDV, 
the subsetting IF is executed 
against each input observation,
and the LAGged value of startdate
will be captured.

KSFE 2022 



Thank you!

KSFE 2022 


	Tips & Tricks� Understanding Data Step Processing
	Agenda
	Data step processing
	Execution phase
	Program Data Vector - PDV
	Vertical dataset concatenation�SET  statement with and without BY statement
	Multiple sets�
	Multiple sets – PDV - Compilation phase 
	Multiple sets – PDV - Compilation phase �
	Multiple sets – PDV - Compilation phase 
	Multiple sets – PDV - Compilation phase 
	Multiple sets – PDV - Compilation phase 
	Multiple sets – PDV - Execution phase 
	Multiple sets – PDV - Execution phase 
	Multiple sets – PDV - Execution phase 
	Multiple sets – PDV - Execution phase 
	Many to many relationship - Execution phase
	Many to many relationship - Execution phase�
	LAG function
	LAG function  - DIF function
	LAG function - condition
	LAG function - condition
	LAG function “looks back”. How to "look ahead“
	LAG function – condition:  „if“  and „where“
	Thank you!

