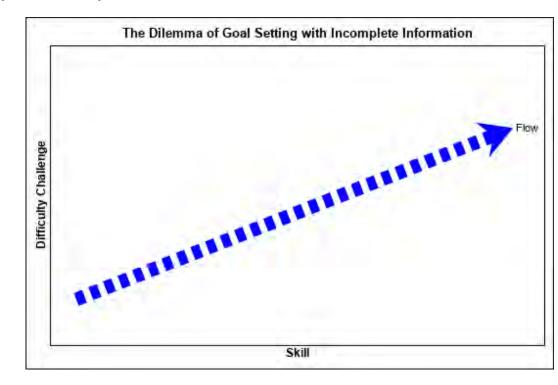
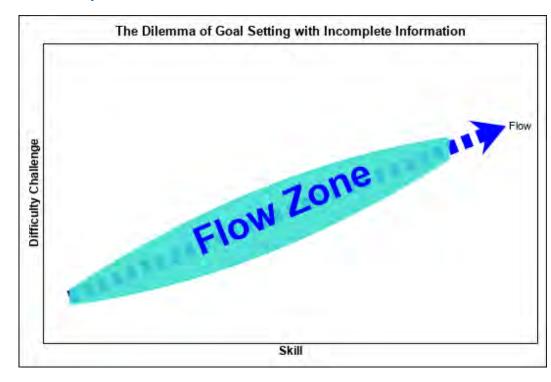
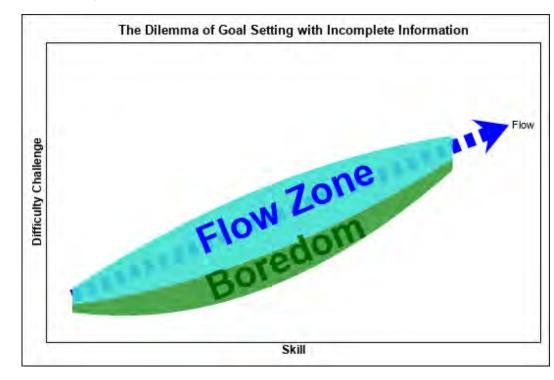
Data Science in Search for Best Predictions of Ski Tour Difficulties

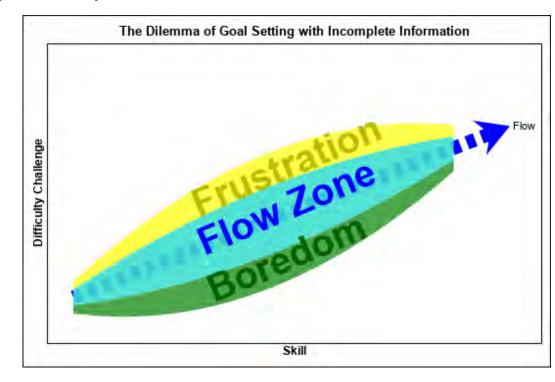


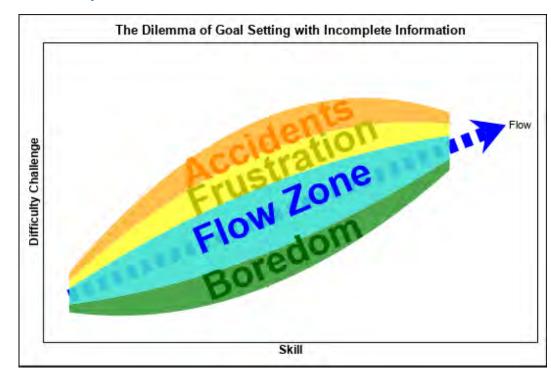
KSFE 2022 in Wiesbaden

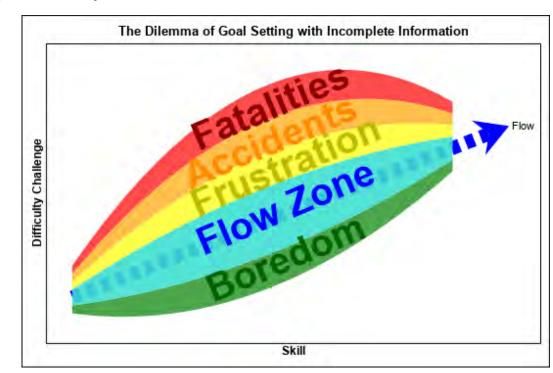
Datenanalyse 15.09 10:30-11:30


Günter Schmudlach, Skitourenguru.ch Ulrich Reincke, SAS Institute









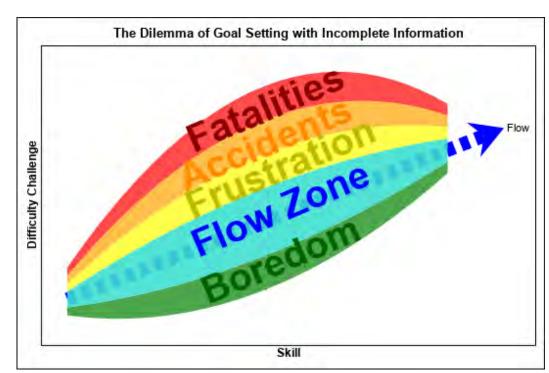
Why is it important?

Yearly official alpine accident statistics:

~70 fatalities of ~400 severe avalanche accidents

~25 fatalities of ~1000 severe ski tour accidents (non-avalanche)

Knowledge of a tour's difficulties is important for


Better tour preparation, reduction of accidents and fatalities

Yearly official alpine accident statistics:

~70 fatalities of ~400 severe avalanche accidents

~25 fatalities of ~1000 severe ski tour accidents (non-avalanche)

DIFFICULTY = f(SlopeAngle, SpeedMax, Curvature, Forestation,)

Dependent Variable: Difficulty

N=1307 Swiss Ski Tours,

Published in Swiss ski touring literature:

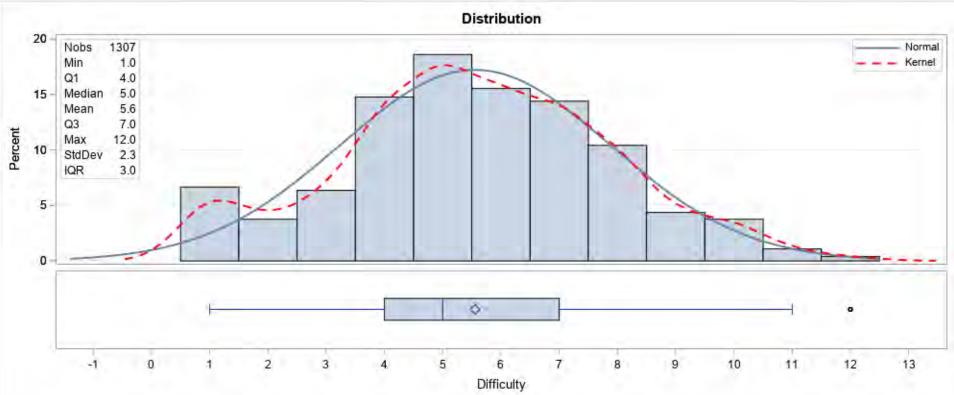
According to the SAC methodology, the difficulty level should only reflect the ski section of a tour up to the ski depot

Main criteria for the SAC difficulty scale

steepness, exposure to fall down, space conditions

steepness: slope angle

exposure to fall: speed max



space conditions: corridor width

target variable / dependent variable

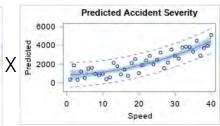
ski tour difficulty from SAC literature

Data preparation: from properties to prediction features

N=1307 Swiss tours, ~9.3 mill. track meters

Local properties along each **Track**:

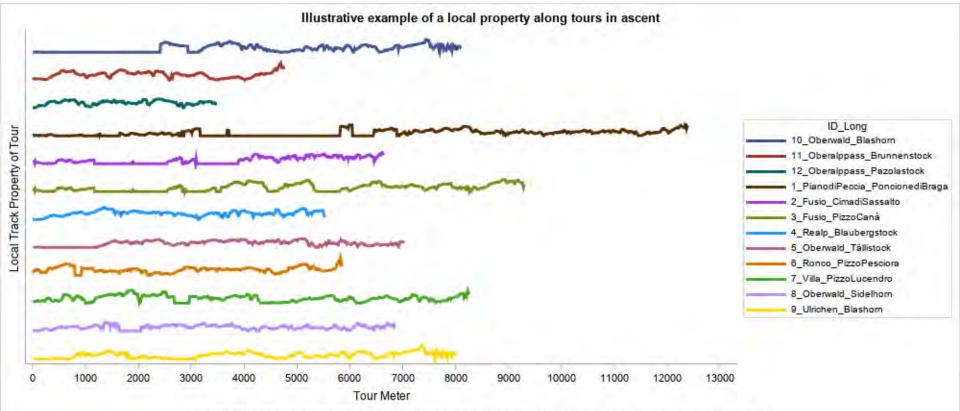
Digital Landscape Model 10m*10m

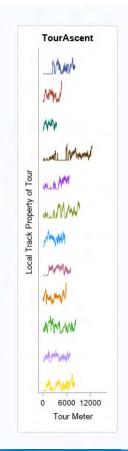


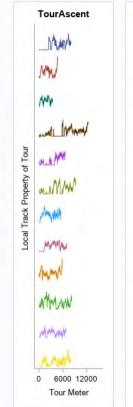
Properties:

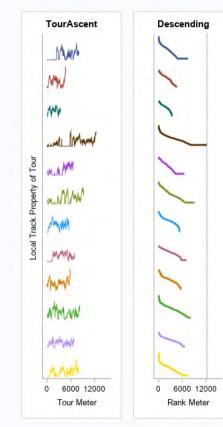
- -SlopeAngle (x,y) "steepness"
- -SpeedMax (x,y) "exposure to fall"
- -Width (x,y) "space conditions"
- -Forestation (x,y)
- -Curvature (x,y)
- -Fold (x,y)

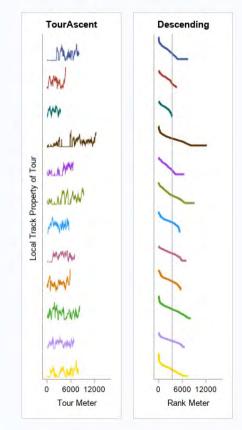
-Risk(x,y):=SlopeAngle (x,y)*SpeedMax (x,y)

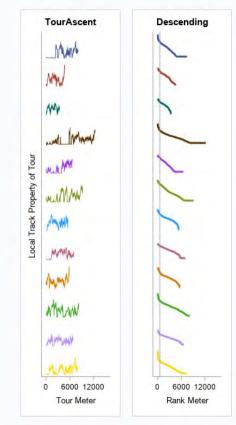


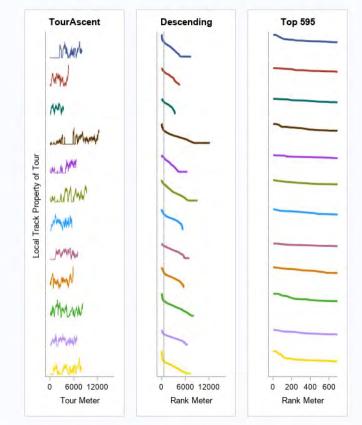

from local track properties to unique tour features

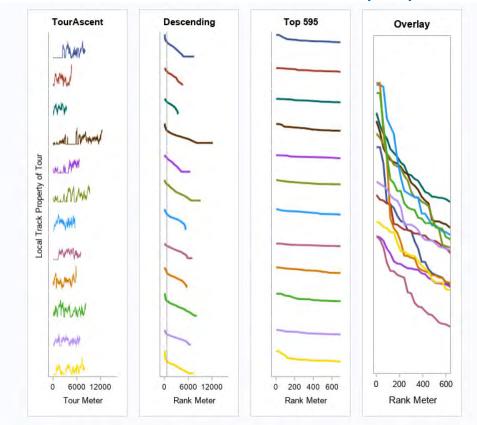


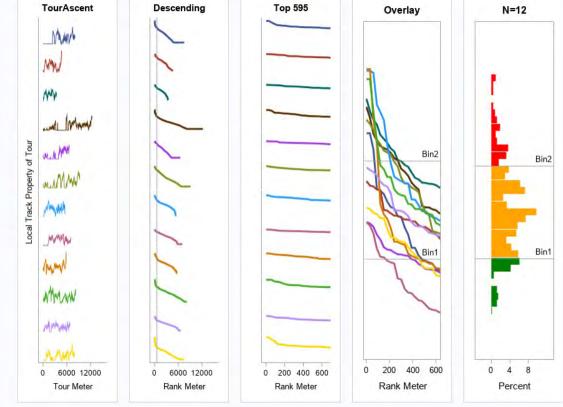




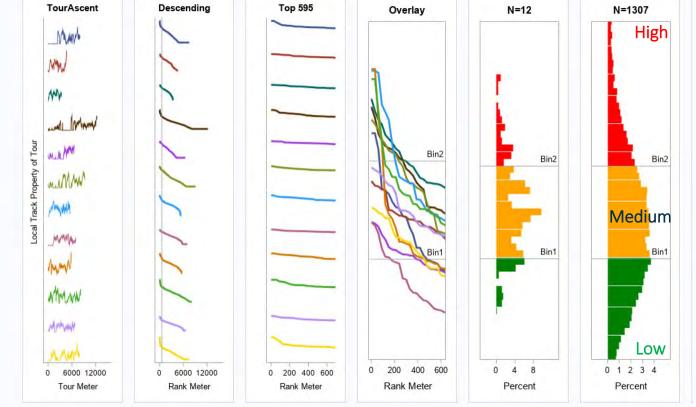




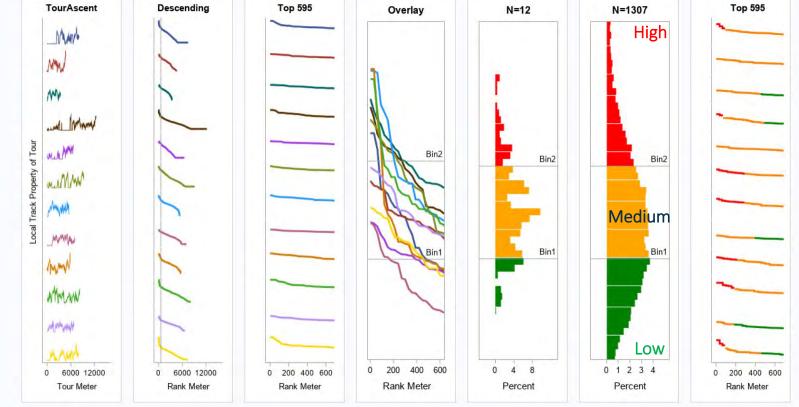




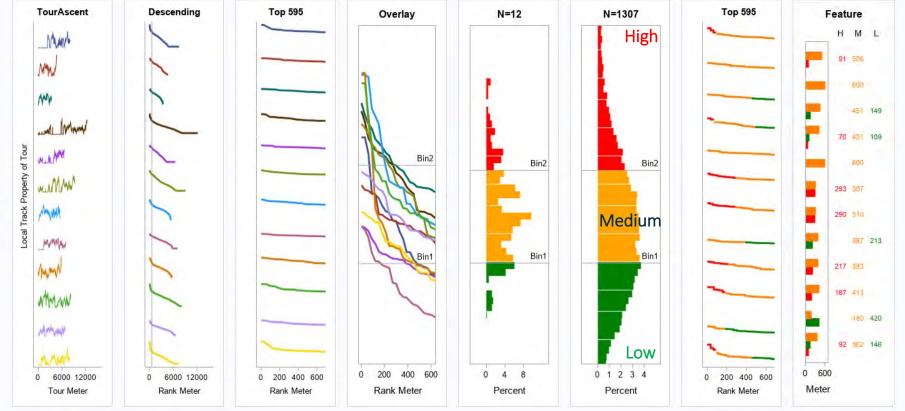
from local track properties to unique tour features



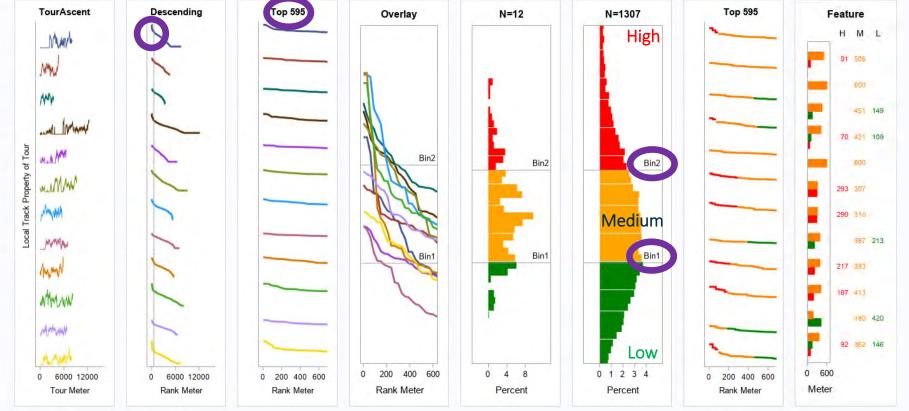
from local track properties to unique tour features



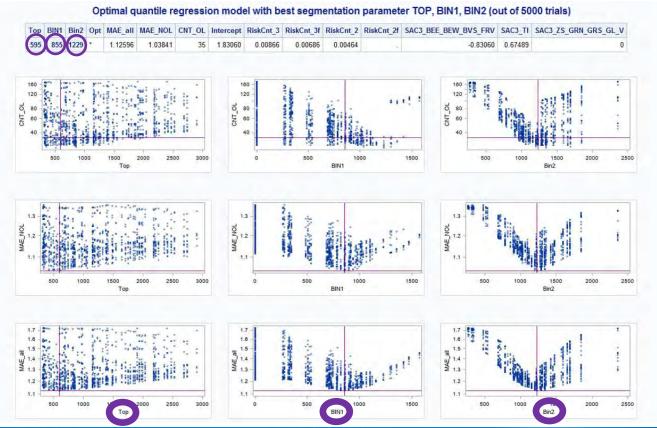
from local track properties to unique tour features



from local track properties to unique tour features



from local track properties to unique tour features

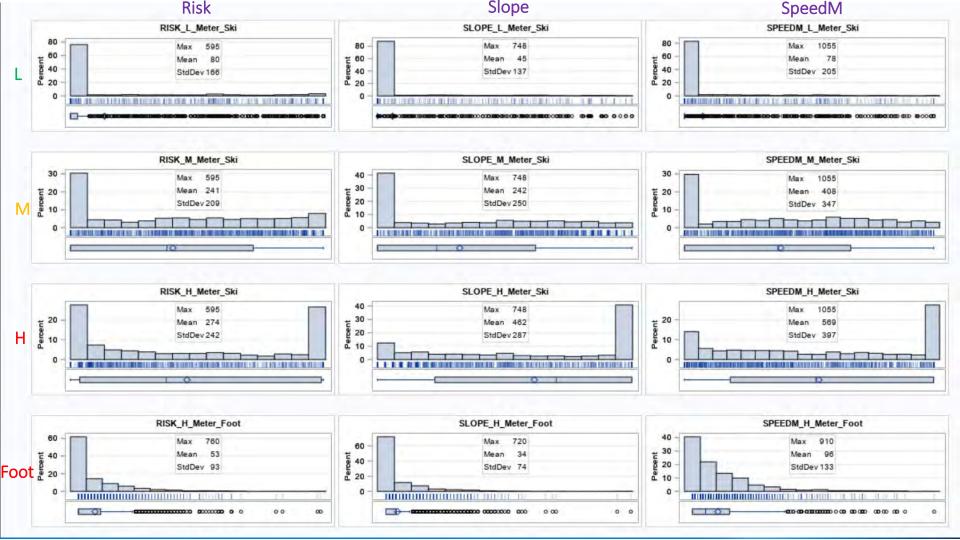


How to find good segmentation parameters: Top, Bin1, Bin2

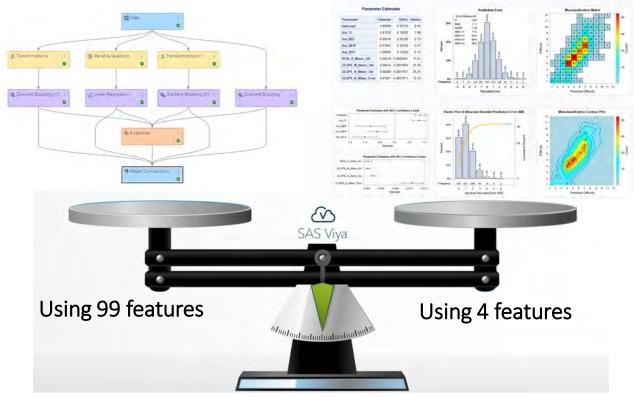
"Trial and Error" minimizing Mean Absolute Prediction Error MAE

from 7 properties to 107 "best" features

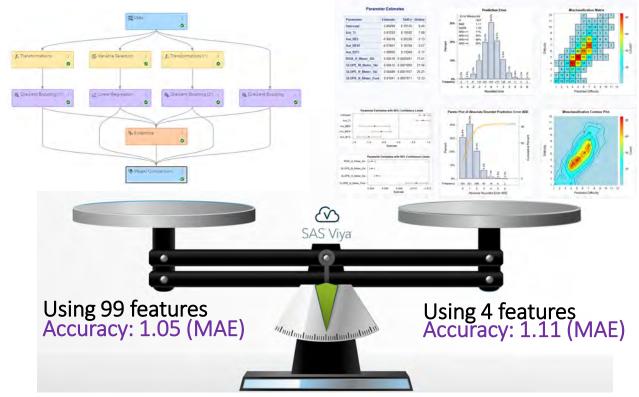
ID_Long	Meter	Speed	SlopeAngle	Forestation	Fold	Curvature	Accelleration	Width
1000_Sagliains_PizZadrell	1	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell	2	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell	3	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell	4	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell	5	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell	6	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell	7	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell	8	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell	9	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell	10	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell	11	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell	12	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell	13	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell	14	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell	15	25	23.0	0.0	-12.78	-5.53	13	147
1000_Sagliains_PizZadrell	16	25	23.0	0.0	-12.78	-5.53	13	147
1000_Sagliains_PizZadrell	17	25	23.0	0.0	-12.78	-5.53	13	147
1000_Sagliains_PizZadrell	18	25	23.0	0.0	-12.78	-5.53	13	147
1000_Sagliains_PizZadrell	19	25	23.0	0.0	-12.78	-5.53	13	147
1000_Sagliains_PizZadrell	20	25	23.0	0.0	-12.78	-5.53	13	147
1000_Sagliains_PizZadrell	21	25	23.0	0.0	-12.78	-5.53	13	147
1000_Sagliains_PizZadrell	22	25	23.0	0.0	-12.78	-5.53	13	147
1000_Sagliains_PizZadrell	23	25	23.0	0.0	-12.78	-5.53	13	147
1000_Sagliains_PizZadrel	24	25	23.0	0.0	-12.78	-5.53	13	147


VARNUM	NAME	VARNUM	NAME	VARNUM	NAME
1	TRN_VAL_Flag	36	ACCELS_L_Meter_Foot	72	FORESTSLOPE_L_Meter_Foot
2	Target_Difficulty	37	ACCELS_M_Meter_Foot	73	FORESTSLOPE_M_Moter_Foo
3	id	38	ACCELS_H_Meter_Foot	74	FORESTSLOPE_H_Meter_Foo
4	ld_long	.39	CURVN_L_Meter_Skl	75	RISK_L_Meter_Ski
5	url	40	CURVN_M_Meter_Skil	76	RISK_M_Meter_Ski
6	×	41	CURVN_H_Meter_Ski	77	RISK_H_Meter_Ski
7	У	42	CURVN_L_Motor_Foot	78	RISK_L_Meter_Foot
8	z	43	CURVN_M_Meter_Foot	79	RISK_M_Meter_Foot
9	count_fm	44	CURVN_H_Meter_Foot	80	RISK_H_Meter_Foot
10	count_am	45	CURVP_L_Meter_Ski	81	SLOPE_L_Meter_Ski
- 11	count_sm	46	CURVP_M_Meter_Ski	82	SLOPE_M_Meter_Ski
12	start	47	CURVP_H_Meter_Ski	83	SLOPE_H_Meter_Ski
13	end	48	CURVP_L_Meter_Foot	84	SLOPE_L_Meter_Foot
14	StartEle	49	CURVP_M_Meter_Foot	85	SLOPE_M_Meter_Foot
15	StopEle	50	CURVP_H_Meter_Foot	86	SLOPE_H_Meter_Foot
16	Ele	51	FOLDN_L_Meter_Ski	87	SPEEDM_L_Meter_Ski
17	SAC	52	FOLDN_M_Meter_Ski	88	SPEEDM_M_Meter_Ski
18	SAC0	53	FOLDN_H_Meter_Ski	89	SPEEDM_H_Meter_Ski
19	SAC1	54	FOLDN_L_Meter_Foot	90	SPEEDM_L_Meter_Foot
20	SAC2	55	FOLDN_M_Meter_Foot	91	SPEEDM_M_Meter_Foot
21	SAC3	56	FOLDN_H_Meter_Foot	92	SPEEDM_H_Meter_Foot
22	ACCELM_L_Meter_Ski	57	FOLDP_L_Meter_Ski	93	SPEEDS_L_Meter_Ski
23	ACCELM_M_Meter_Ski	58	FOLDP_M_Meter_Ski	94	SPEEDS_M_Meter_Ski
24	ACCELM_H_Meter_Ski	59	FOLDP_H_Meter_Ski	95	SPEEDS_H_Meter_Ski
25	ACCELM_L_Meter_Foot	60	FOLDP_L_Meter_Foot	96	SPEEDS_L_Meter_Foot
26	ACCELM_M_Meter_Foot	61	FOLDP_M_Meter_Foot	97	SPEEDS_M_Meter_Foot
27	ACCELM_H_Meter_Foot	62	FOLDP_H_Meter_Foot	98	SPEEDS_H_Meter_Foot
28	SAC_Vol	63	FOREST_L_Meter_Ski	99	WIDTH_L_Meter_Ski
29	Meter	64	FOREST_M_Meter_Ski	100	WIDTH_M_Meter_Ski
30	Mode	65	FOREST_H_Meter_Ski	101	WIDTH_H_Meter_Ski
31	Outlyer_code	66	FOREST_L_Meter_Foot	102	WIDTH_L_Meter_Foot
32	Outlyer_Comment	67	FOREST_M_Moter_Foot	103	WIDTH_M_Meter_Foot
33	ACCELS_L_Meter_Ski	68	FOREST_H_Meter_Foot	104	WIDTH_H_Meter_Foot
34	ACCELS_M_Meter_Ski	69	FORESTSLOPE_L_Meter_Ski	105	Author_Grp_Blas
35	ACCELS_H_Meter_Ski	70	FORESTSLOPE_M_Meter_Ski	106	SelectionProb
		74	ENDERTOINDE II Mater Old	107	Compliant Michel

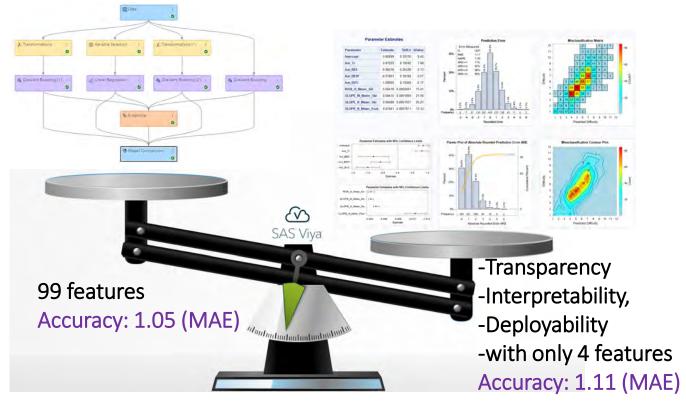
Counting your steps like the fitness app of your smart phone



What predictive modeling approach did we take?

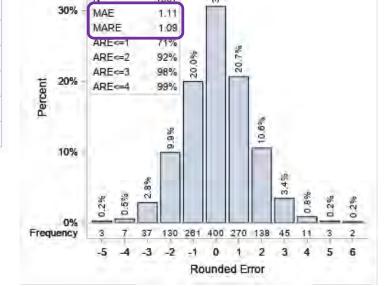

Machine Learning vs. Statistical Model

What predictive modeling approach did we take?


Machine Learning vs. Statistical Model

What Results did we get?

Transparency, Interpretability, Deployability outweighted Accuracy


Variable selection with quantile regression

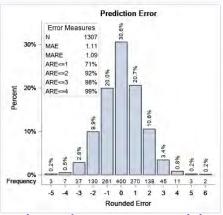
For median of difficulty

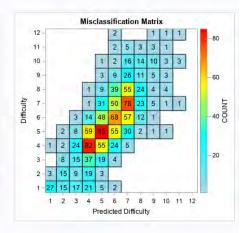
The HPQUANTSELECT Procedure Quantile Level = 0.5

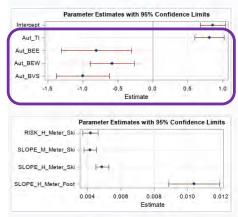
	Selection Summary								
Step	Effect Entered	Number Effects In	AIC	SBC					
0	Intercept	1	-185.5716	-180.3961					
1	RISK_H_Meter_Ski	2	-984.6951	-974.3442					
2	SLOPE_H_Meter_Foot	3	-1216.9940	-1201.4675					
3	Aut_BVS	4	-1246.9930	-1226.2911					
4	Aut_BEW	5	-1277.7180	-1251.8405					
5	SLOPE_H_Meter_Ski	6	-1307.2939	-1276.2410					
6	SLOPE_M_Meter_Ski	7	-1484.6233	-1448.3949					
7	Aut_TI	8	-1510.2989	-1468.8950					
8	Aut_BEE	9	-1522.1704*	-1475.5910*					

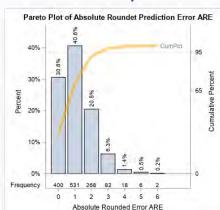
Fit Statistics							
Objective Function	725.08515						
R1	0.40396						
Adj R1	0.40028						
AIC	-1522.17042						
AICC	-1522.03163						
SBC	-1475.59101						
ACL	0.55477						

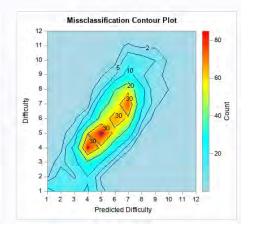
Error Measures


Prediction Error

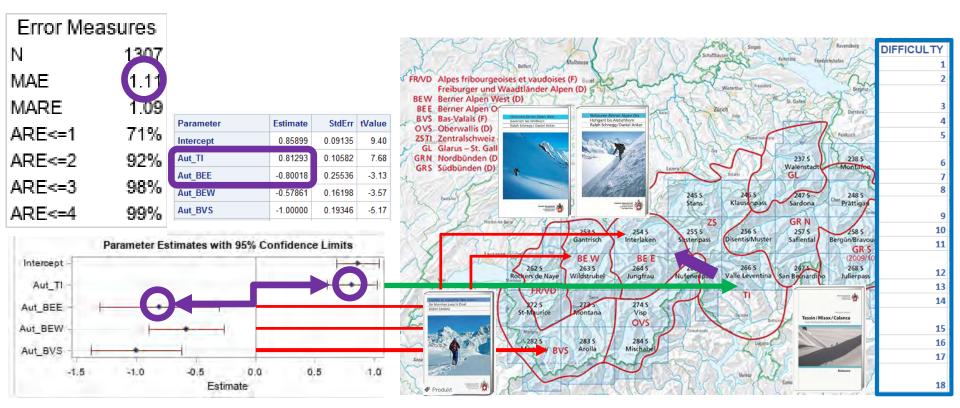

Risk:=SlopeAngle*SpeedMax


Parameter Estimates

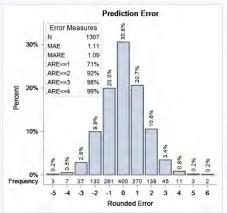

Parameter	Estimate	StdErr	tValue
Intercept	0.85899	0.09135	9.40
Aut_TI	0.81293	0.10582	7.68
Aut_BEE	-0.80018	0.25536	-3.13
Aut_BEW	-0.57861	0.16198	-3.57
Aut_BVS	-1.00000	0.19346	-5.17
RISK_H_Meter_Ski	0.00418	0.0002401	17.41
SLOPE_M_Meter_Ski	0.00415	0.0001890	21.94
SLOPE_H_Meter_Ski	0.00488	0.0001937	25.21
SLOPE H Meter Foot	0.01041	0.0007811	13.33

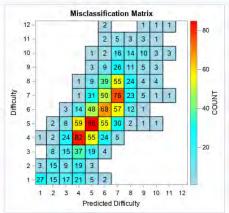


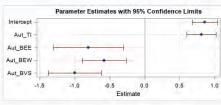
Four out of 12 selected author dummy variables

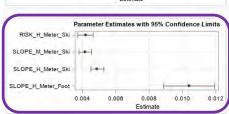


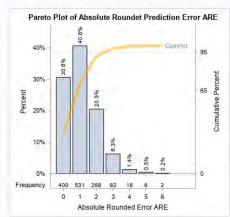
Significant author dummy variables

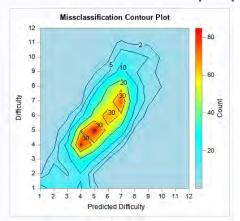

Systematic Overrating vs Underrating bias detected for difficulty



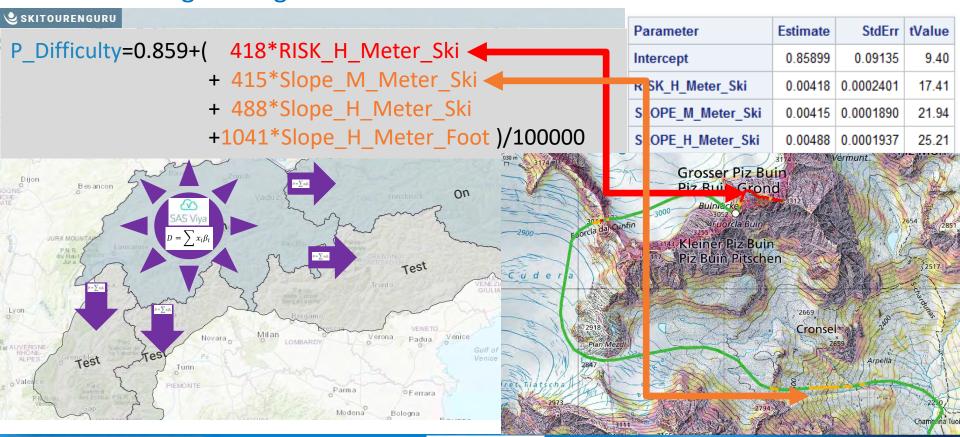

Parameter Estimates


Parameter	Estimate	StdErr	tValue
Intercept	0.85899	0.09135	9.40
Aut_TI	0.81293	0.10582	7.68
Aut_BEE	-0.80018	0.25536	-3.13
Aut_BEW	-0.57861	0.16198	-3.57
Aut_BVS	-1.00000	0.19346	-5.17
RISK_H_Meter_Ski	0.00418	0.0002401	17.41
SLOPE_M_Meter_Ski	0.00415	0.0001890	21.94
SLOPE_H_Meter_Ski	0.00488	0.0001937	25.21
SLOPE H Meter Foot	0.01041	0.0007811	13.33



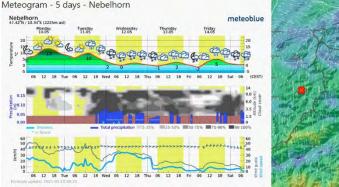


Selected four out of ~20 000 ski tour features derived from local track properties



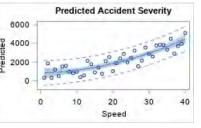
Model deployment to expand services of skitourenguru.ch

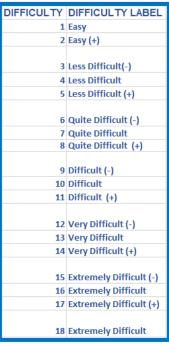
to 4 neighboring countries with ~10 000 additional unrated ski tours



Off course, skitourenguru does not exempt you from

applying the recommended avalanche and risk assessment strategies




Takeaways: What did we achieve?

Difficulty ~

- We are proposing a new definition of **difficulty** metric derived from interaction of two local track properties: **slope angel and speed of falling** acting as proxies for accident probability and severity
- Overall, this metric is consistent with the unique human and cultural expertise published in the extensive SAC ski touring literature from which our model was trained.
- The discretionary range of the SAC methodology and prediction error margin is in the range of 1.1 to 1.8 levels of the 18-step SAC difficulty scale (i.e. "+" or "-")
- An additional advantage of this methodology is its independent from prevailing weather and snow conditions at the moment of manual rating.
- We still have ongoing discussions with incorporation of the foot section in this model.
- The model provides the basis for fast and automatic bulk scoring prediction for up to ~10000 tours throughout the alps in AT, DE, IT, FR. It will support the expansion of Skitourenguru's services.

Günter Schmudlach, Skitourenguru GmbH, Zürich (

Ulrich Reincke, Principal Data Scientist, SAS, Heidelb

Thank you for your attention. And don't forget: Always put safety first

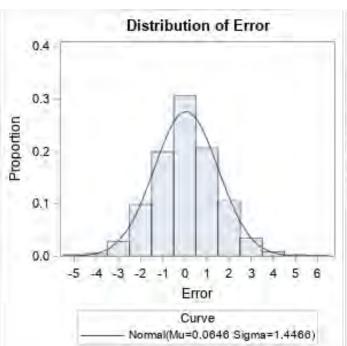
Outlyer list with absolute prediction error gt 3.5

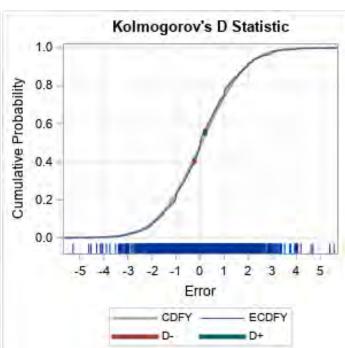
Type=Overrating

id_long	Difficulty	Р	Ε	SAC0	Outlyer_Comment	StartEle	StopEle	Ele	RISK_H_Meter_Ski	SLOPE_H_Meter_Ski	SLOPE_M_Meter_Ski	SLOPE_H_Meter_Foot
1258_Hasen_Gotterli	1	5	-4	ZS		449	1394	945	0	748	0	0
171_Cons_PizTerri	7	11	-4	GRN		1468	3146	1789	595	748	0	360
564_Küblis_Chrüz	1	5	-4	GRN	Different Route	809	2190	1384	157	372	376	0
255_Furggels_Stelli	1	5	-4	GRN	Manual Underrat	1198	2047	976	147	643	105	0
912_Mühlebach_Ärnergale	1	5	-4	VSE	Different Route	1232	2621	1391	169	629	119	0
387_MittlerRossfal_Hochalp	1	5	-4	GL	Compromise	899	1527	650	234	264	484	0
535_Ladstafel_Mittaghorn	5	9	-4	VSE		1924	3004	1080	595	748	0	220
358_Latsch_CuolmdaLatsch	1	6	-5	GRS	Road above 1600	1609	2294	686	244	748	0	0
1035_HospizSimplonp_MonteLeone	5	10	-5	VSE		1998	3548	1657	508	698	50	290
1466_Sufers_VizanPintg	1	6	-5	GRN	Road above 1600	1413	2513	1120	423	748	0	0

Type=Underrating

id_long	Difficulty	P	Ε	SAC0	Outlyer_Comment	StartEle	StopEle	Ele	RISK_H_Meter_Ski	SLOPE_H_Meter_Ski	SLOPE_M_Meter_Ski	SLOPE_H_Meter_Foot
903_MayensdeMérib_PointedeVouasso	12	6	6	BVS		1728	3481	1755	595	748	0	0
367_ZurEich_GrosBrun	12	6	6	BEW	Compromise	951	2098	1147	595	748	0	0
1231_Engi_Gufelstock	11	6	5	GL	Compromise	812	2434	1622	260	748	0	0
706_ChantSura_PizRadönt	10	5	5	GRS	Other Ski Depot	2330	3056	751	28	120	147	300
407_Urnerboden_Läckistock	11	6	5	ZS	Compromise	1376	2483	1107	455	697	51	0
725_Dürrboden_Leidhorn	9	5	4	GRS	Compromise	2006	2930	925	150	292	456	0
507_H.d'Allières_VanildesArtses	11	7	4	FRV	Other Ski Depot	1006	1986	980	127	0	707	250
613_Diavolezza_PizCambrena	11	7	4	GRS		2978	3595	855	595	748	0	0
736_Brigels_Bifertenstock	11	7	4	GRN		1285	3416	2173	595	748	0	0
818_Jochstock_ReissendNollen	11	7	4	ZS		2508	3002	493	595	748	0	0
886_LeFlon_Chambairy	10	6	4	BVS		1046	2198	1151	595	748	0	0
916_BourgSt.Berna_MontVélan	10	6	4	BVS		1916	3721	1805	595	748	0	0
1448_Münster_HejiZwächte	9	5	4	BEE	Compromise	1387	3083	1696	323	748	0	0
1236_Elm_Grüenenspitz	9	5	4	GL	Other Ski Depot	960	2354	1394	94	316	432	60
1227_Horb_Frümsel	11	7	4	GL	Other Ski Depot	887	2261	1374	22	113	635	300
591_Tschlin_Muttler	8	4	4	GRS	Other Ski Depot	1533	3290	1758	44	22	726	30





Prediction Residuals / Error

Test for normality (N=1307)

Kolmogorov's D Statistic

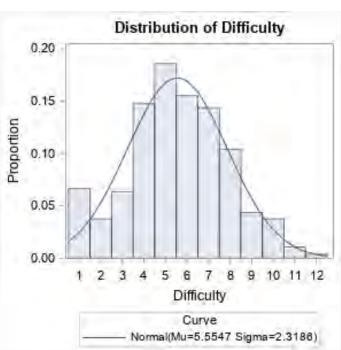
The UNIVARIATE Procedure Fitted Normal Distribution for Error

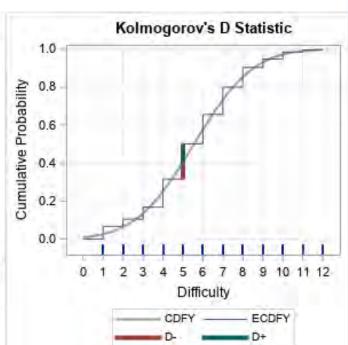
Goodness-of-F	it Tests	for Normal [Distribution		
Test	5	tatistic	p Value		
Kolmogorov-Smirnov	D	0.03076998	Pr > D	0.168	
Cramer-von Mises	W-Sq	0.33496573	Pr > W-Sq	0.110	
Anderson-Darling	A-Sq	1.76279181	Pr > A-Sq	0.126	

Kolmogorov's D Statistic

D 0.03077

	Kolmogorov D								
	Error	Value	Low	High					
D-	-0.232248	0.0269607	0.3917368	0.4186975					
D+	0.2099216	0.03077	0.5400028	0.5707728					





Target Variable Difficulty

Test for normality (N=1307)

Kolmogorov's D Statistic

The UNIVARIATE Procedure
Fitted Normal Distribution for Difficulty (diff)

Goodness-of-F	it Tests	for Normal	Distribution		
Test	S	tatistic	p Value		
Kolmogorov-Smirnov	D	0.0956892	Pr > D	<0.001	
Cramer-von Mises	W-Sq	2.0483810	Pr > W-Sq	<0.001	
Anderson-Darling	A-Sq	11.8013910	Pr > A-Sq	<0.001	

Kolmogorov's D Statistic

D 0.0956892

	Kolmogorov D								
	x	Value	Low	High					
D-	5	0.0902327	0.3152257	0.4054584					
D+	5	0.0956892	0.4054584	0.5011477					

Data preparation: from properties to features

