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Abstract

This paper deals with the estimation of a survival curve in models with ran-

dom right censoring and dependent censoring mechanism. We consider a speci�c

dependent censorship model in which conditional on a covariate, the survival

and censoring times are assumed to be independent. We investigate asymp-

totic properties of a corrected version of a survival curve estimator introduced
by Cheng (1989). In particular we show uniform strong consistency and weak

convergence to a Gaussian process. Comparisons of this estimator with the well-

known Kaplan-Meier-estimator are included. Finally, some examples illustrate

how the estimator performs.

Key words: Nonparametric survival curve estimator, informative random censoring,
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1 Introduction

In reliability and survival analysis one is often faced with censored lifetime data, i.e.
with only partially observable lifetimes. We consider the following well-known model
for randomly right censored data.

Let (T; U); (T1; U1) ; :::; (Tn; Un) be independent pairs of positive random variables
where Tj represents the lifetime (failure time) and Uj the censoring time of the j-th
object under study. In a model of right random censoring the observations consist of
the pairs:

(Xj; �j); j = 1; :::; n;
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where Xj = min(Tj; Uj) and �j = I(Tj � Uj) is an indicator showing whether Xj is
the failure (�j = 1) or the censoring time (�j = 0). Further let F and G denote the
distribution functions of the lifetime T and of the censoring variable U , respectively.
Here and in the following for any distribution function G we denote by �G the survival
or tail function �G(�) = 1�G(�):
In a model with random right censoring the problem of interest is the estimation of
the survival function

1� F (t) = �F (t) = P (T > t):

The cumulative hazard function

�(t) =

Z t

0

dF (u)
�F (u�) :

uniquely determines the distribution by the relation

�F (t) = expf��c(t)g
Y
s�t

(1���(s)) (1)

for all t such that �(t) <1; where ��(s) = �(s)� �(s�) is the jump height at time
s and �c(t) = �(t)�Ps�t��(s) is the continuous part of �. Therefore, an estimator

for �F (t) can be derived from an estimator for �(t):
Under the assumption that T and U are independent, the well-known nonparametric

survival curve estimator introduced by Kaplan and Meier (1958) has the property of
uniform strong consistency for �F on the support of the distribution of X = T ^U (see
among others Stute and Wang (1993), Chen and Lo (1997) and the cited literature).
This KM-estimator or Product-Limit estimator, is de�ned by:

b�FKM

n (t) =
Y

i:X(i)�t

�
1� �(i)

n� i + 1

�
;

where X(1) � ::: � X(n) are the order statistics of X1; :::; Xn and �(i) is the censoring
indicator corresponding to X(i): However, the assumption of an independent censoring
mechanism, often referred to as non-informative censoring, is not always justi�ed. In
some cases the censoring variable U or its distribution G carries information about the
lifetime (distribution). Such an informative censoring can, for instance, be described
by the function m(x) = P (� = 1jX = x). Dikta (1998) assumes that T and U are
independent and that m belongs to a parametric class of functions. Then m relates
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the distributions G and F to each other so that the observation of a censoring time
contributes directly to the estimation of F: If especially m is a constant, then we arrive
at the Koziol-Green model in which the survival function �G is a power of the survival
function �F of the lifetimes, i.e.

�G(t) = �F (t)�; t � 0

for some �xed, unknown constant � > 0: This latter model has been reviewed by Cs�org�o
(1988) and Cs�org�o and Faraway (1998) and generalized by Gather and Pawlitschko
(1998). Testing for the Gather-Pawlitschko model was considered by Cs�org�o (1998).
As to be expected estimators under these types of informative censoring outperform
the KM-estimator.

In some cases it is not reasonable to assume independence between the censoring
variable U and the lifetime T: There may be dependencies due to a covariate Z: For
instance, in a competing-risk problem, where some technical system fails due to one
or more competing causes, one only observes the time to failure of the system and the
corresponding failure mode. If a system with two failure modes A and B fails due to
cause A, then the failure time of mode B is randomly censored and vice versa. Since
the failure times due to both modes are a�ected by the same stress and operating
environment described by a covariate, it is likely that the failure times are positively
correlated. In clinical studies the survival and censoring times can be a�ected by a set
of patient's covariates as age, blood pressure, cholesterol,....

In the model to be considered here we assume that the survival time T and the cen-
soring time U are conditionally independent given a covariate Z. This model has been
investigated, among others, by Beran (1981), Dabrowska (1987) and Cheng (1989).
The aim of this paper is to present a corrected version of Cheng's estimator of the
survival curve and to investigate its asymptotic properties. We make no further as-
sumptions about the speci�c inuence of the covariate. It turns out the even in cases
when the KM-estimator is consistent the proposed estimator can perform better than
the KM-estimator with respect to the asymptotic variance.

In the following set � = infft 2 R+ : �H(t) = 0g for H(t) = P (X � t). It is well
known that the KM-estimator may fail to be consistent for �F (t) in situations in which
T and U are dependent. Based on the observations (Xj; �j); j = 1; ::; n, the following
subdistribution functions

F1(t) = P (Tj � t; �j = 1); G0(t) = P (Uj � t; �j = 0)

can consistently be estimated, and therefore

H(t) = P (Xj � t) = F1(t) +G0(t);
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too. It is known that H(t) and the subdistributions F1(t) and G0(t) do not uniquely
determine �F (t) (see Langberg et al. (1978)). In addition, these authors showed that
under the assumption that the discontinuities of F1(t) and G0(t) are disjoint on the
interval [0; �), the KM-estimator in fact consistently estimates the survival function

�C(t) = exp

8<:�
tZ

0

dF c
1 (s)

�H(s�)

9=;�
Y
s�t

(1� �F1(s)
�H(s�) ) t 2 [0; �). (2)

Using a result of Williams and Lagakos (1977) or by a direct comparison with (1),
it can be shown that the survival function �C(t) equals �F (t) under the constant sum

condition

d�(t) =
dF (t)
�F (t�) =

dF1(t)
�H(t�) ;

which is ful�lled, in particular, if the survival and censoring times are independent.
Models in which this condition fails to hold are called variable sum models.

2 The Model

The chosen approach, introduced by Beran (1981) and further developed by Dabrowska
(1987) and Cheng (1989), considers in addition to the variables T and U of interest an
accompanying covariate Z. The survival time T and the censoring time U are supposed
to be conditionally independent given this covariate Z. In the following we present this
general set-up following the lines of Cheng (1989).

We assume that the unknown distribution function F of the lifetime T is absolutely
continuous with density f . The variables T and U are supposed to be conditionally
independent given a covariate Z: For ease of notation we restrict ourselves to a uni-
variate random variable Z; all results with obvious slight modi�cations can be carried
over to the case of a p-dimensional random vector Z: The absolutely continuous dis-
tribution function of Z is denoted by R. Thus, the observable data is of the form
(Xj; �j; Zj); j = 1; : : : ; n, with

Xj = min(Tj; Uj); �j = I(Tj � Uj):

The aim is to estimate the underlying survival function �F based on the random sample
(Xj; �j; Zj); j = 1; : : : ; n:

The starting point here is the conditional cumulative hazard function at time point
t given Z = z:

�(tjz) =
Z t

0

dF (ujz)
�F (u� jz) ;
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where F (ujz) = P (T � ujZ = z). Under the conditional independence assumption
�(tjz) and Z t

0

�G(u� jz)dF (ujz) = P (X � t; � = 1jZ = z); t � 0

are identi�able, where G(ujz) = P (U � ujZ = z). With r(�) denoting the density
function of the distribution of Z, �(tjz) can be expanded as follows:

�(tjz) =
Z t

0

r(z) �G(u� jz)dF (ujz)
r(z) �G(u� jz) �F (u� jz) =

Z t

0

dA(u; z)

B(u; z)
:

Here A(u; z) = r(z)P (X � u; � = 1jZ = z) and B(u; z) = r(z)P (X � ujZ = z). The
self suggesting idea now is to estimate A and B by their empirical counterparts An and
Bn using appropriate kernel estimators:

An(u; z) =
1

n

nX
i=1

I(Xi � u; �i = 1)Kb(z; Zi)

Bn(u; z) =
1

n

nX
i=1

I(Xi � u)Kb(z; Zi);

where Kb(u; v) =
1
b
K(u�v

b
) with a kernel function K and bandwidth b = bn tending to

0 as n!1: As a result we get the following estimators for the conditional cumulative
hazard functions

�n(tjz) =
Z t

0

dAn(u; z)

Bn(u; z)
(3)

and for the conditional survival functions �F (tjz)
�Fn(tjz) = exp f��n(tjz)g :

To show uniform strong consistency of �n(tjz) and �Fn(tjz) the following condition is
needed (see Cheng (1989), Dabrowska (1989) and Rosenblatt (1971)):

Condition 1

1.1 The kernel functionK is bounded and Lipschitz continuous of order 1 with respect
to the Euclidean distance on R:

1.2
R
K(z)dz = 1,

R
zK(z)dz = 0 and

R
z2 jK(z)j dz <1.

1.3 The bandwidth sequence b � bn ful�lls: b! 0 and log n
nb

! 0 (n!1).

5



1.4 The partial derivatives, with respect to t, of F (tjz) and G(tjz) exist and are
continuous in t for each z.

1.5 The functions r(z), F (tjz) and G(tjz) have bounded continuous �rst and second
partial derivatives with respect to z.

1.6 For any closed interval [a; d] � R+ , there exist constants �; �(") > 0 such that
P (X > �jZ = z) � �("); 8z 2 [a; d] with r(z) � ", " > 0 arbitrarily small.

Note that the last part of this condition implies that

P (X > �) � "

Z
z:r(z)�"

P (X > �jZ = z)dz > 0:

Cheng (1989) showed that Condition 1 ensures asymptotic unbiasedness of An and Bn

and uniform strong consistency of �n(tjz) and �Fn(tjz) in the following sense

sup
0�t��?

sup
z2[a;d]

j�n(tjz)� �(tjz)j = O(b2) +O

 �
logn

nb

�1=2
!

a:s: (4)

sup
0�t��?

sup
z2[a;d]

j �Fn(tjz)� �F (tjz)j = O(b2) +O

 �
logn

nb

�1=2
!

a:s: (5)

over a rectangle of the form [0; � ?]� [a; d] , where a; d 2 R with a � d and � ? 2 (0; �) :

Remark 1 Under the additional assumptions that
P

b�n < 1 for some � > 0 and

nb5n ! 0; Dabrowska (1989) showed strong uniform consistency at a rate O(
q

log b�1
n

nbn
).

The choice of bn = n�� demands that for strong uniform consistency 1
5
< � < 1. For

all such permissible values of � this results in a better rate of convergence than the rate

stated above.

2.1 Asymptotic Behaviour of an Estimator of the Survival
Function

Denoting Rn the empirical distribution function based on the sample (Z1; :::; Zn) of
covariates, Cheng (1989) used

e�n(t) =

Z
�n(tjz)dRn(z)
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as an estimator for the cumulative hazard function �(t) and consequently e�F n(t) =

expf�e�n(t)g as an estimate of �F (t): We show that e�n(t) in fact estimates an upper

bound of �(t) and therefore, e�n(t) and
e�F n(t) are not consistent in general. In this

section we introduce a modi�ed (corrected) version of the estimator proposed by Cheng
and investigate its asymptotic properties.
De�ne the convex function g(x) = � ln(1� x), 0 � x < 1. Then we obtain:

�(t) = g(F (t)) = g(EI(T � t)) = g(EE[I(T � t)jZ])
� Eg(E[I(T � t)jZ])
=

Z
�(tjz)dR(z):

Recall that we assumed that F is absolutely continuous. This inequality shows that
Cheng's considerations deal with upper bound estimators for the true unconditional
cumulative hazard function. As a direct consequence the proposed estimator for the

survival curve e�F n(t) = expf�e�n(t)g is an estimator of a lower bound of �F (t). Cheng
(1989) showed, as the main result of his paper, weak convergence of the processp
n(e�n(t)�

R
�(tjz)dR(z)) to a centered Gaussian process (t 2 [0; � ?]).

Starting with �Fn(tjz); as proposed by Cheng, we de�ne the modi�ed estimator

b�F n(t) =

Z
exp (��n(tjz)) dRn(z) =

Z
�Fn(tjz)dRn(z),

which we will call CIM -estimator (Conditional IndependenceModel) in the following.

We will show that b�F n(t) is a consistent estimator for the unconditional survival function
�F (t).

Theorem 1 Under Condition 1 b�F n(t) is a uniformly strongly consistent estimator for

�F (t) on [0; �); i.e. sup
0�t<�

jb�F n(t)� �F (t)j ! 0 as n!1; a.s.

Proof. We will use the following decomposition of b�F n(t)� �F (t) :

b�F n(t)� �F (t) =

Z
�Fn(tjz)dRn(z)�

Z
�F (tjz)dR(z)

=

Z �
�Fn(tjz)� �F (tjz)� dRn(z) +

Z
�F (tjz)d (Rn(z)�R(z))

= Cn +Dn
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If the distribution of Z has a bounded support covered by [a; d]; then (5) ensures that

jCnj � sup
z2[a;d]

j �Fn(tjz)� �F (tjz)j = O(b2) +O(

r
logn

nb
): (6)

Otherwise, we split Cn into two integrals
R d
a
+
R1
d
: For the second integral we can

choose d large enough such that for a given " > 0 the term jC(2)
n j, given by

jC(2)
n j =

����Z 1

d

�
�Fn(tjz)� �F (tjz)� dRn(z)

���� � 2
1

n

nX
i=1

I(Zi > d)! 2 �R(d);

can be bounded by " a.s. for all su�ciently large n. For the �rst term we may again
apply (6) yielding jCnj ! 0 a.s.
Dn can be rewritten asZ

�F (tjz)d (Rn(z)� R(z)) =
1

n

nX
i=1

�F (tjZi)� �F (t):

The SLLN ensures jDnj ! 0 as n!1; a.s.

Since b�F n(t) and �F (t) are monotone functions, pointwise convergence can be carried
over to uniform convergence on [0; � ?] 8� ? < � (cf. Shorack and Wellner (1986), p.
96). Since �F is bounded, this extends to uniform convergence on [0; �).

To extend this result the common way is to represent the di�erenceDn(t) =
b�F n(t)� �F (t)

as a sum of i.i.d. random variables and a remainder term similar to Lo and Singh (1986),
Cs�org�o (1996) or Gather and Pawlitschko (1998).

Proposition 2 Let the distribution of Z be concentrated on a �nite interval [a; d] and
de�ne M(t; z) = �F (tjz)� �F (t): Then under Condition 1

Dn(t) =
1

n

nX
i=1

M(t; Zi) + Vn(t); 0 � t < �;

where for any � ? 2 (0; �) with probability one

sup
0�t��?

jVn(t)j = O(b2) +O(

r
logn

nb
):
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Proof. Consider the following decomposition of Dn(t):

Dn(t) = D(1)
n (t) +D(2)

n (t) +D(3)
n (t) (7)

with
D(1)

n (t) =

Z
( �Fn(tjz)� �F (tjz))dR(z);

D(2)
n (t) =

Z
�F (tjz)d [Rn(z)�R(z)] ;

D(3)
n (t) =

Z
( �Fn(tjz)� �F (tjz))d [Rn(z)� R(z)] :

1. For the �rst term D
(1)
n (t) we get with �n(tjz) = �n(tjz)� �(tjz):

�Fn(tjz)� �F (tjz) = �F (tjz)(expf��n(tjz)g � 1)

= �F (tjz) (��n(tjz) + o(�n(tjz)))
= �F (tjz)�n(tjz) (o(1)� 1) :

Using (5) it follows for n!1:

sup
0�t��?

sup
z2[a;d]

j �F (tjz)�n(tjz)j = O(b2) +O(

r
logn

nb
):

This yields

sup
0�t��?

jD(1)
n (t)j = O(b2) +O(

r
logn

nb
):

2. The second term D
(2)
n (t) is:

D(2)
n (t) =

Z
�F (tjz)dRn(z)� �F (t) =

1

n

nX
i=1

M(t; Zi):

3. Using uniform strong convergence of �Fn(tjz) to �F (tjz), the dominated convergence
theorem and noting that Rn(z) and R(z) are bounded monotone functions, it

follows that D
(3)
n (t) converges to zero uniformly with probability one at the rate

O(b2) +O(
q

log n
nb

).

Combining the results of these three cases proves the assertion.
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Investigating the �rst part D
(1)
n (t) of the decomposition of Dn(t) in the proof of Propo-

sition 2 carefully allows to separate a further additive term yielding

Dn(t) =
1

n

nX
i=1

(L(t; Zi; Xi; �i) +M(t; Zi)) + ~Vn(t); 0 � t < �;

where for t; z; x � 0; � 2 f0; 1g

L(t; z; x; �) = �F (tjz)
0@ tZ

0

I(x > u)dF (ujz)
�G(ujz) �F 2(ujz) � I(x � t; � = 1)

�F (xjz) �G (xjz)

1A : (8)

We omit a detailed derivation of this result here (compare the proof of Theorem 3)
since we do not gain a better rate of convergence of the remainder ~Vn(t) compared to
that in Proposition 2. Unfortunately this rate of convergence is not good enough to

investigate the rate of strong uniform consistency of the estimator b�F n(t) or to establish
weak convergence. So this has to be carried out via alternative methods, for which we
make use of the following condition.

Condition 2

2:1 E

�
�F 2(tjZ)

Z t

0

dF (ujZ)
�G(ujZ) �F 2(ujZ)

�
<1 8t 2 [0; �):

2:2
p
n � b2 �! 0;

lognp
nb

�! 0 (n!1):

To prove a weak convergence result for the CIM -estimator b�F n(t), we have to show
weak convergence of the process:

Wn(t) =
p
n

�Z
�Fn(tjz)dRn(z)� �F (t)

�
on the space D[0; � ?] of right continuous functions on [0; � ?] with �nite left-hand limits
(cadlag functions) equipped with the Skorohod topology. We note that the recent best
weak-convergence results of Cs�org�o (1996) for the KM-estimator allow data intervals
increasing to [0; � ]. Our technique restrict us to a �xed interval [0; � ?] and thus leaves
the question of corresponding extensions open.
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Theorem 3 Under Conditions 1 and 2 the process (Wn(t)); t 2 R+ ; converges weakly
on D[0; � ?] for 0 � � ? < � to a mean zero Gaussian process W = (W (t)); t 2 R+ ; with
covariance function (0 � s � t � � ?):

Cov (W (s);W (t)) = E

�
�F (sjZ) �F (tjZ)

�Z s

0

dF (ujZ)
�G(ujZ) �F 2(ujZ) + 1

��
� �F (s) �F (t): (9)

Proof. The proof uses similar methods as presented in Cheng (1989) and will be given
in 3 steps.

1. We use the same decomposition as in the proof of Proposition 2:
Wn = W

(1)
n +W

(2)
n +W

(3)
n ; where W

(i)
n =

p
nD

(i)
n ; i = 1; 2; 3, and

D(1)
n (t) =

Z
( �Fn(tjz)� �F (tjz))dR(z);

D(2)
n (t) =

Z
�F (tjz)d [Rn(z)�R(z)] ;

D(3)
n (t) =

Z
( �Fn(tjz)� �F (tjz))d [Rn(z)� R(z)] :

For the term W
(1)
n (t) we recall from the proof of Proposition 2 that

�Fn(tjz)� �F (tjz) = �F (tjz)�n(tjz) (o(1)� 1)

where �n(tjz) = �n(tjz) � �(tjz): So the asymptotic distribution properties of

W
(1)
n coincide with those of

�n1=2

Z
�F (tjz)�n(tjz)dR(z):

Here we can directly use (3.6) in Cheng (1989) to see that uniformly on [0; � ?],

W (1)
n (t) =

1p
n

nX
i=1

�F (tjZi)

8<:
tZ

0

I (Xi > u) dA(u;Zi)

B2 (u;Zi)
� I (Xi � t; �i = 1)

B (Xi;Zi)

9=; r(Zi)

+O(n1=2b2)

in probability for n!1:
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W
(2)
n (t) = 1p

n

Pn
i=1(

�F (tjZi)� �F (t)) is a sum of i.i.d. random variables with zero

mean E( �F (tjZ)� �F (t)) = 0: Therefore the CLT applies to yield joint asymptotic
normality for all �nite dimensional marginals.

W
(3)
n (t) converges to zero in probability for each �xed t 2 [0; � ?] : Tightness of

the probability measures associated with the process �n(z) =
p
n [Rn(z)�R(z)]

is well known (Billingsley (1968), Theorem 16.4) and the uniform strong conver-
gence of �Fn(tjz) to �F (tjz) on �nite intervals [a; d] follows from (5). This yields,

following Cheng (1989) that W
(3)
n (t)

P! 0 as n!1.

2. The conclusion from these considerations concerning W
(i)
n (t) is that the asymp-

totic distribution of Wn(t) is that of

W �
n(t) =

1

n1=2

nX
i=1

(Li(t) +Mi(t));

where Li(t) = L(t; Zi; Xi; �i) andMi(t) =M(t; Zi) are de�ned as before in Propo-
sition 2 and (8). To determine the covariance structure of W (t) we notice after
some straightforward calculations that for 0 � s � t � � ? :

ELi(t) = 0; EMi(t) = E
�
�F (tjZi)� �F (t)

�
= 0, ELi(s)Mi(t) = EMi(s)Li(t) = 0

and

ELi(s)Li(t) = E

0@ �F (sjZi) �F (tjZi)

sZ
0

dF (ujZi)
�G(ujZi) �F 2(ujZi)

1A ;

where the latter result can either be achieved by direct computation or by using
Proposition 2.3 of Dabrowska (1987). Furthermore, we have EMi(s)Mi(t) =
E �F (sjZi) �F (tjZi) � �F (s) �F (t): By means of the CLT this shows that the �nite
dimensional marginal distributions of W �

n(t) are asymptotically normal with zero
mean and covariance function speci�ed by (9).

3. It remains to show tightness for the sequence of distributions associated with
the random functions W �

n(t). For this we will use condition (15.21) of Billingsley
(1968). We have to establish that for 0 � t1 � t � t2 � � ?, n � 1, and a
non-decreasing, continuous function Q, the following inequality holds:

E
�jWn(t)�Wn(t1)j2 jWn(t2)�Wn(t)j2

� � [Q(t2)�Q(t1)]
2 :
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This amounts to showing that such an upper bound applies to

AL =
1

n2
E

0@ nX
i=1

L1i

!2 nX
i=1

L2i

!2
1A

and

AM =
1

n2
E

0@ nX
i=1

M1i

!2 nX
i=1

M2i

!2
1A

with

L1i = Li(t)� Li(t1); M1i =Mi(t)�Mi(t1)

L2i = Li(t2)� Li(t); M2i =Mi(t2)�Mi(t):

For the term AL this can directly be deduced from (3.9) in Cheng (1989). For
the term AM we can write AM = E

�
n( �M(t)� �M(t1))

2( �M(t2)� �M(t))2
�
with

�M(t) = 1
n

Pn
i=1Mi(t): Following the argumentation of Lo and Singh (1985)

and noting that the random variables Mi(t) are bounded uniformly in [0; � ?]
with EMi(t) = 0 and known covariance structure (see above) it follows that
for all s; t 2 [0; � ?];Var(M1(s) � M1(t)) � jQM(s) � QM (t)j for a continuous
non-decreasing function QM . This leads to

AM � 3E(M1(t)�M1(t1))
2E(M1(t2)�M1(t))

2

� 3 (QM(t2)�QM(t1))
2 ;

which completes the proof.

2.2 Con�dence Bounds for the Survival Curve

With the results from Theorem 3 we are now able to derive pointwise con�dence inter-
vals for �F (t). Using a consistent estimator bvn(t) for the asymptotic variance

v(t) = E

�
�F 2(tjZ)

�Z t

0

dF (ujZ)
�G(ujZ) �F 2(ujZ)

��
+Var( �F (tjZ))

of the process W we obtain pointwise two-sided asymptotic con�dence intervals for
�F (t) to the level (1� �); 0 < � < 1:

13



b�F n(t)�
rbvn(t)

n
z1��=2;

with z1��=2 the (1 � �=2)-quantile of the N(0; 1)-distribution. Using the plug-in-
technique, a consistent estimator bvn(t) of v(t) can be found to be

bvn(t) = 1

n

nX
i=1

�F 2
n(tjZi)r

2
n(Zi)I(Xi � t; �i = 1)

B2
n(Xi;Zi)

+
1

n

nX
i=1

�
�Fn(tjZi)� �Fn(tjZ)

�2
;

where rn(z) = 1
n

Pn
i=1Kb(z; Zi) is the usual kernel density estimator for r(z) and

�Fn(tjZ) = 1
n

Pn
j=1

�Fn(tjZj). If the covariate Z is degenerate, i.e. a constant, then v(t)

reduces to �F 2(t)
R t
0

dF (u)
�G(u) �F 2(u)

, the well known asymptotic variance of the Kaplan-Meier

estimator (cf. Breslow and Crowley (1974)).

2.3 Estimation with Discrete Covariates

A covariate with an absolutely continuous distribution needs density estimation with
kernel smoothing. Less expenditure is necessary if the covariate takes only �nitely many
values, say 1; :::; m; as often applies in practice, e.g. in cases where covariates such as
sex, type of treatment, : : : are involved. For such discrete covariates the classical
KM-estimator within each class fZ = kg; k = 1; :::; m, can be used to estimate the
underlying law of F; which can be expressed as

�F (t) =
mX
k=1

pk �F (tjZ = k)

with weights pk = P (Z = k): The obvious idea is to use KM-estimates b�F n
KM(tjZ = k)

for �F (tjZ = k) in the strati�ed sample and to estimate the weights pk by

p̂k =
1

n

nX
i=1

I(Zi = k):

The resulting estimate b�F d
KM(t) =

mX
k=1

p̂k
b�F n
KM(tjZ = k) (10)

is uniformly strongly consistent as the following proposition shows.

14



Proposition 4 In the discrete covariate model the estimator b�F d
KM(t) de�ned in (10) is

uniformly strongly consistent for �F (t) on 0 � t � � ?; � ? 2 (0; �); where b�F n
KM(tjZ = k) is

the KM-estimate of the subsample f(Xij ; �ij ; Zij) : Zij = k; j = 1; : : : ; nkg;
Pm

k=1 nk =
n;m � n, provided that nk tends to 1 as n!1:

Proof. From the SLLN we have that p̂k converges to pk with probability 1. Also we

have the well known result of uniform strong consistency of b�F n
KM(tjZ = k) for t 2 [0; � ?].

This implies pointwise strong consistency of b�F d
KM(t) for 0 � t � � ?, i.e.

b�F d
KM(t) =

mX
k=1

p̂k
b�F n
KM(tjZ = zk)! �F (t)

with probability 1. Since �F and b�F d
KMare decreasing functions this implies uniform

strong consistency of b�F d
KM(t) on [0; � ?].

As an example we consider a model with a covariate which takes only two values; for
brevity we omit the details of the model here. Figure 1 shows the results of a simulation.
In this example the constant-sum condition fails to hold. Therefore, the crude KM-
estimator is consistent for �C(t) as de�ned in (2), which deviates from �F (t): In addition

Figure 1 shows the two KM-estimates of the strati�ed sample b�F n
KM(tjZ = k); k = 1; 2

and the linear combination b�F d
KM(t), which �ts �F well.

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

Figure 1: Estimates b�F n
KM(tjZ = k); k = 1; 2 , b�F n

KM(t) and b�F d
KM(t) with

functions �C(t) and �F (t) .
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Finally, we remark that the asymptotic behaviour of the estimator b�F d
KM(t) can be

investigated in more detail. It is possible to represent the di�erence b�F d
KM(t) � �F (t)

as an average of i.i.d. variables with an additive remainder of order O( logn
n
): This

implies that the rate of convergence in Proposition 4 is O

�q
log log n

n

�
: In addition

weak convergence to a mean zero Gaussian process can be shown. For details we refer
to [10].

3 Examples and an Application

3.1 A Variable-Sum Model

For constant-sum models the KM-estimator b�F n
KM(t) provides a consistent nonparamet-

ric estimate for �F (t). In this section we will introduce a conditional Koziol-Green-type
model for which the constant-sum condition is not ful�lled. The aim of this section is to
illustrate that under this condition the introduced estimator is still consistent whereas
the crude KM-estimator deviates signi�cantly from �F (t). In this model we de�ne the
conditional distributions to be of a Weibull-type with common shape parameter � > 0
and scale parameters �; � > 0. Z is assumed to be exponentially distributed with
parameter � > 0:

F (tjz) = 1� exp
���zt��

G(tjz) = 1� exp
���zt��

R(z) = 1� exp (��z)

Here the covariate Z has an multiplicative e�ect on the failure rates of T and U ,
respectively. The lifetime T and censoring time U are conditional independent given
Z. Condition 2.1 is met if � � �: First we show that the constant-sum condition fails
to hold in this setting. The unconditional failure rates can be calculated as follows:

�(t) =
f(t)
�F (t)

=
��t��1

�t� + �

�#(t) =
f1(t)
�H(t)

=
��t��1

(� + �) t� + �

This implies that �(t) > �#(t) 8t 2 (0; � ?]; �; �; � > 0, which shows that the
constant-sum condition is not met. As a result the KM-estimator is no longer consistent
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1

Figure 2: CIM -estimate b�F n(t) , K-M-estimate b�F n
KM(t) , Cheng estimatee�F n(t) and true survival curve �F (t).

for �F (t). A useful way to examine whether the KM-estimator provides an estimate of
an upper or lower bound of �F (t) is to check the right-tail-increasing (RTI) condition
of Nair (1993). If this condition is ful�lled �C(t) as de�ned in (2) is an upper bound
of �F (t). This idea seems natural here, because �#(t), the hazard rate related to the
KM-estimate, is strictly smaller than �(t) and so the KM-estimate should estimate an
upper bound of �F . The RTI-condition demands that P (U > ujT > t) is non-decreasing
in t for every �xed u; which is obviously ful�lled since

P (U > ujT > t) =
�t� + �

�t� + �u� + �
:

The di�erence �(t) � �#(t) is increasing in � for �; t; �; � �xed. Since the censoring
proportion P (� = 0) = 1� lim

t!1
F1(t) = �

�+�
is solely determined by � and �, the

distortion therefore gets larger with higher censoring proportion. Figures 2 and 3 show
both estimates and the residuals for n = 400, � = 2:5, � = 2, � = 1 and � = 2.
The induced theoretical censoring proportion is 44:44%, whereas the sample censoring
proportion is 43:25%. We see that the KM and Cheng estimators indeed estimate
upper and lower bounds of �F respectively, whereas the CIM -estimator better �ts the
true underlying unconditional survival function. This becomes more evident looking
at the deviations shown in Figure 3.
Finally we focus on the asymptotic variance v(t) which tends to zero (t ! 1) for all
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-0.15
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-0.05

0.05

0.1

Figure 3: Deviations of CIM -estimate b�F n(t) , K-M-estimate b�F n
KM(t)

and Cheng estimate e�F n(t) .

� > �. We note that this condition is equivalent to P (� = 0) < 1
2
. Figure 4 illustrates

this for the previous parameter constellation.

2 4 6 8
t

0.05

0.1

0.15

0.2

0.25

0.3

0.35

v(t)

Figure 4: Asymptotic variance v(t) with parameters � = 2:5; � = 2; � = 1; � = 2.
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3.2 A Constant-Sum Model

Now we will focus on the asymptotic variance of the processW and compare it with the
asymptotic variance of the KM-estimator. Since the model introduced in the previous
section seems not appropriate for this purpose (the two estimators estimate di�erent
functions) we introduce a model where the constant-sum condition holds true. Let

F (tjz) = 1� exp
���zt��

G(tjz) = 1� exp
���t��

R(z) = 1� exp (��z)
with �; �; �; � > 0. Here the inuence of the covariate is multiplicative only on the
hazard rate of the lifetime distribution F . Censoring is not inuenced by Z. This
approach seems quite natural for many problems in survival and reliability analysis,
where some external e�ect has inuence only on the lifetime of the object under study.
As before conditional independence of T and U given Z is assumed what in this spe-
ci�c model is equivalent with the assumption that T and U are independent. So the
constant-sum condition is ful�lled and the failure rates �(t) and �#(t) both equal ��t

��1

�t�+�
.

As will turn out, even in this case of independence, it pays to include the covariate in
the model with respect to the asymptotic variance (see Proposition 5 below).

From (9) the asymptotic variance of the process W is given by

v(t) = E

�
�F 2(tjZ)

Z t

0

dF (ujZ)
�G(ujZ) �F 2(ujZ)

�
+Var

�
�F (tjZ)� ;

whereas we have

vKM(t) = �F 2(t)

Z t

0

dF (u)
�G(u) �F 2(u)

for the KM-estimator (Breslow and Crowley (1974)). For this speci�c model we get:

vKM(t) =

�
�

�t� + �

�2 Z t

0

���u��1

(�u� + �)2
1

e��u�( �
�u�+�

)2
du

=
��(e�t

� � 1)

�(�t� + �)2

and

Var( �F (tjZ)) =
��2t2�

(�+ �t�)2(�+ 2�t�)
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v(t)� Var
�
�F (tjZ)� = �

 
e�t

�

�+ �t�
� 1

�+ 2�t�
� �e(2�t

�+��
�
)�(t)

�

!
:

Here we set
�[t] = �[0; k(t) + d; 2k(t) + d]; (11)

with k(t) = �t� and d = ��
�
, where �[�; z0; z1] =

R z1
z0
t��1e�tdt denotes the generalized

incomplete Gamma-function. For this model it is possible to show vKM(t) � v(t):

Proposition 5 For all choices of parameters �; �; �; � > 0 and 8 0 � t � � ? we have

vKM(t)� v(t) = �

�
(�� ��)(ek(t) � 1)� �k(t)ek(t)

�(�t� + �)2
+
�e(2k(t)+d)�[t]

�

�
(12)

� 0;

where �[t] is de�ned as in (11).

Proof.

To prove the proposition we will use Jensen's inequality in the following form (see e.g.
Klambauer (1975)):

f

 R b
a
p(x)g(x)dxR b
a
p(x)dx

!
�
R b
a
p(x)f(g(x))dxR b

a
p(x)dx

;

where f(�) is a convex function on an interval (c1; c2), g(�) an integrable function on
[a; b] with c1 < g(x) < c2, the function p(�) is strictly positive on [a; b] and all integrals
exist.
In view of (12) we have to show that for all �; �; �; � > 0 and 8 0 � t � � ?:

�[0; k(t) + d; 2k(t) + d] � �2k(t)ek(t) � �(�� ��)(ek(t) � 1)

(�k(t) + ��)2
� e�(2k(t)+d)

In this inequality we replace the left-hand side �[t] by a lower bound which is derived
using the Jensen-type inequality above for the special choice a = k(t)+d, b = 2k(t)+d,
c1 = 0, c2 = 1, p(x) = expf�xg, f(x) = 1

x
and g(x) = x. Since all assumptions are

ful�lled some algebra yields

�[0; k(t) + d; 2k(t) + d] � e�(k(t)+d)
�
1� e�k(t)

�2
k(t) + d+ 1� e�k(t) (2k(t) + d+ 1)

:
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Figure 5: Asymptotic variance functions v(t) and vKM(t) for a parameter
choice: � = 1, � = 0:457, � = 1 and � = 2.

The next step is to show that the right-hand side of this inequality above is an upper

bound of �2k(t)ek(t)��(����)(ek(t)�1)
(�k(t)+��)2

� e�(2k(t)+d), i.e.

e�(k(t)+d)
�
1� e�k(t)

�2
k(t) + d+ 1� e�k(t) (2k(t) + d+ 1)

� k(t)ek(t) � (1� d)(ek(t) � 1)

(d+ k(t))2e(2k(t)+d)
:

After some lengthy, but straightforward calculations it turns out that this is equivalent
to

e�k(t)
�
k(t) + 1� ek(t)

�2 � 0;

what now easily veri�es (12) for all �; �; �; � > 0 and 8 0 � t � � ?.

It seems that in general explicit expression for the asymptotic variance can hardly be
determined. For a special setting of parameters (� = 1, � = 0:457, � = 1 and � = 2
with P (� = 0) = 0:44) a signi�cant reduction of asymptotic variance especially in the
tail can be observed (see Figure 5). This is something one might have expected given
additional information provided in the model by the covariate Z. The behaviour of the
asymptotic variance strongly depends on the choice of the rates �; �; � and the shape
parameter �.

3.3 Leukemia Study (University of Ulm 1993)

Finally we present the analysis of data from a leukemia study carried out at the Univer-
sity of Ulm in 1993. In this study 80 persons with diagnosis of leukemia were examined
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from the date of diagnosis till death, recovery or other reasons which took them o�
the study. A group of 39 persons was treated with a placebo drug while the remaining
41 persons received a leukemia drug. The covariate relapse-free survival time has been
observed in addition to survival and censoring time and it seems plausible, that this
covariate has e�ect on them. Since we aim at an estimation of the survival curve for
the population within the two groups to be able to predict survival probabilities for
patients with the same diagnosis, and of course the covariate is not known in advance,
the CIM -model seems appropriate. We compute estimators for the survival function
�F (t) using the KM-estimator b�F n

KM(t) and the CIM -estimator b�F n(t) with the covariate
relapse-free survival time. The examined data was of the form

(Xj; �j; Zj; �j) j = 1; : : : ; 80 with

Xj = min (Tj; Uj) ; �j =

�
0 if Tj > Uj

1 if Tj � Uj
; �j =

�
0 if Placebo-Group
1 if Verum- Group

The following short extraction gives a little insight to the data:

Xj �j Zj �j
4.3 0 2.2 1
5.2 1 1.7 1
5.4 0 2.5 0
6 0 2.6 1
6.1 0 3.8 1
...

...
...

...

The verum-group has a censoring proportion of 53:7% and the placebo-group of 58:9%.
Figures 6 and 7 show the estimates strati�ed by treatment.
We conclude from Figure 6, that if survival and censoring times are independent or

conditionally independent given the covariate Z, the estimators b�F n
KM (t) and b�F n(t)

nearly reect the same survival structure for the verum-group. For the placebo-data

(Figure 7) a signi�cant di�erence between b�F n
KM(t) and b�F n(t) can be observed. This

di�erence is due to the additional information taken into account by using the covariate
data.
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tion to Cheng's paper and for helpful comments. We also thank the referees and an
associate editor for their careful reading and suggestions which helped to improve the
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Figure 6: b�F n
KM(t) and b�F n(t) � � � for Verum-data (� = censored observation)
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Figure 7: b�F n
KM(t) and b�F n(t) � � � for Placebo-data (� = censored observation)
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