Konferenz für SAS-Anwender in Forschung und Entwicklung 28. Februar – 1. März 2002 Universität Dortmund

Diskriminanzanalyse mit binären Daten

Bernd Jäger¹, Michael Wodny¹, Karl-Ernst Biebler¹, Paul Eberhard Rudolph², Karen Mathies³

¹ Institut für Biometrie und Medizinische Informatik, Ernst-Moritz-Arndt-Universität Greifswald

² Forschungsinstitut für die Biologie landwirtschaftlicher Nutztiere, Dummerstorf

³ Klinik und Poliklinik für Innere Medizin A, Ernst-Moritz-Arndt-Universität Greifswald

Abstände zweier Vektoren im ⁿ

Euklidischer Abstand

$$d_E^2(x,y) = \sum_{i=1}^n (x_i - y_i)^2$$

Mahalanobisabstand d_M

 $d_M(x, y) = (x - y) \cdot COV^{-1} \cdot (x - y)^T$, wobei COV ⁻¹ die Inverse der empirischen Kovarianzmatrix ist.

Abstände für Binärdaten

Für
$$x = (0,0,0,1,1,0,1,0) \in \{0,1\}^8 und$$

 $y = (0,1,0,1,1,0,0,0) \in \{0,1\}^8$

		Уi				
		1	0	Σ		
	1	$\alpha = 2$	$\beta = 1$	3		
X _i	0	γ= 1	δ= 4	5		
	Σ	3	5	r = 8		

Simple-Matching-Distance

$$d_{SM}(x,y) = 1 - \frac{\alpha + \delta}{n} = \frac{1}{4}$$

Jaccard-Abstand (Tanimoto-Abstand)

$$d_j(x,y) = 1 - \frac{\alpha}{\alpha + \beta + \gamma} = \frac{5}{7}$$

Jaccard-Metrik ist reichhaltiger als Simple-Matching-Distance

$$x = (1,1,0,0,0,1,1,1) \in \{0,1\}^{8}$$

$$y = (1,1,0,0,0,0,0,0) \in \{0,1\}^{8}$$

$$z = (0,0,1,0,0,1,1,1) \in \{0,1\}^{8}$$

$$d_{SM}(x,y) = 1 - \frac{2+3}{8} = \frac{3}{8}$$

$$d_{j}(x,y) = 1 - \frac{2}{2+3+0} = \frac{3}{5}$$

$$d_{SM}(x,z) = 1 - \frac{3+2}{8} = \frac{3}{8}$$

$$d_{j}(x,z) = 1 - \frac{3}{3+2+1} = \frac{1}{2}$$

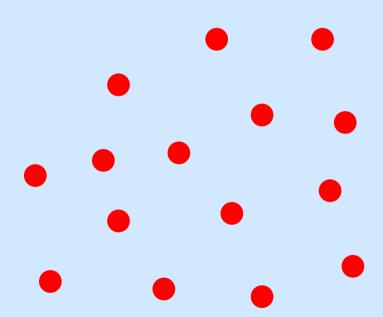
Jaccard-Metrik ist reichhaltiger als Simple-Matching-Distance

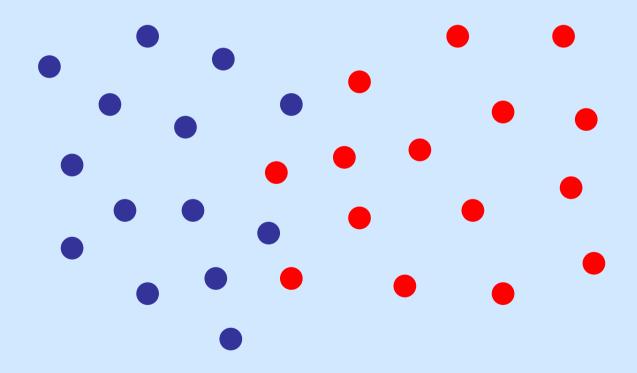
Simple-Matching-Distance

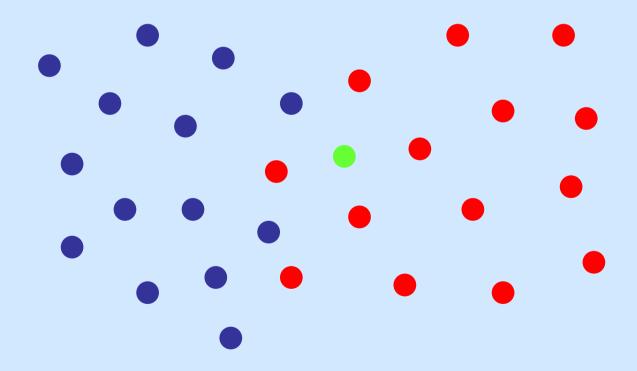
$$d_{SM}(x,y) = 1 - \frac{\alpha + \delta}{n}$$

$$\alpha \text{ von } 0 \text{ bis } n$$

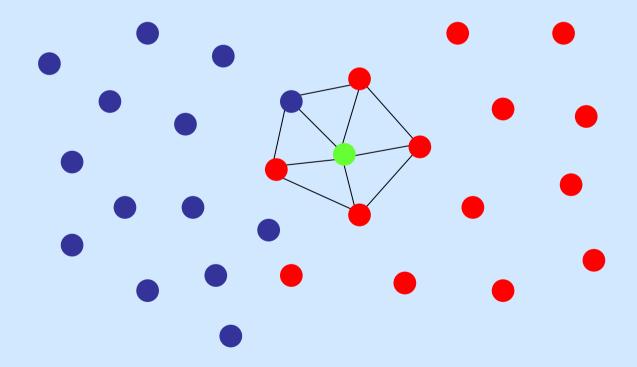
$$\delta \text{ von } 0 \text{ bis } (n - \alpha)$$

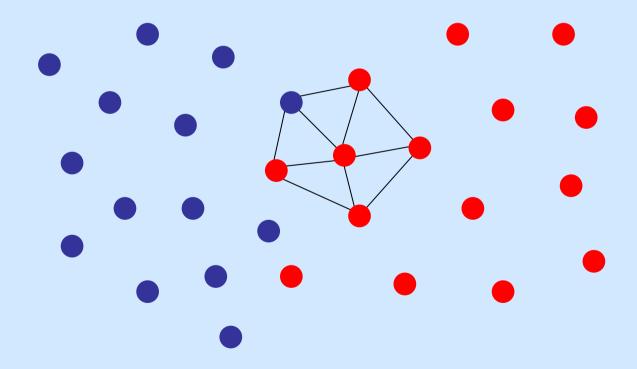

Jaccard-Abstand (Tanimoto-Abstand)

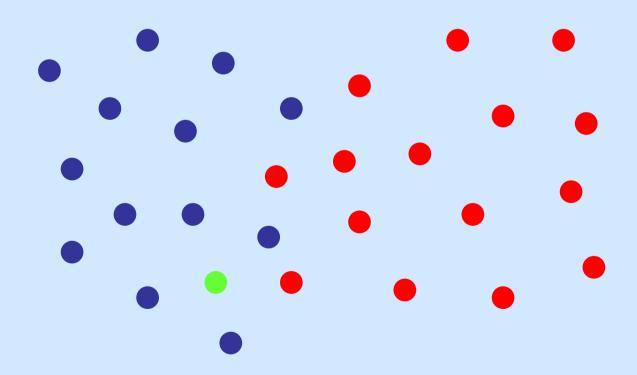

$$d_{j}(x,y) = 1 - \frac{\alpha}{\alpha + \beta + \gamma}$$

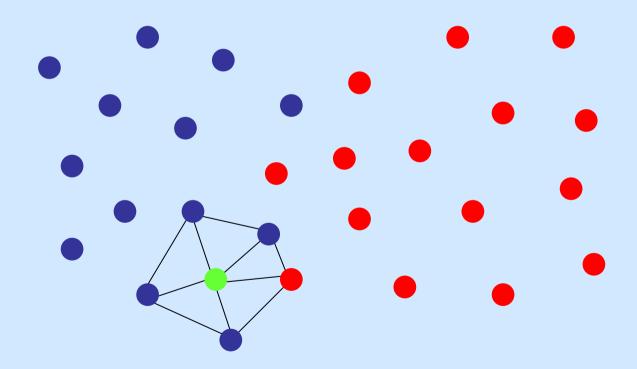

$$\alpha \quad von \quad 0 \quad bis \quad n$$

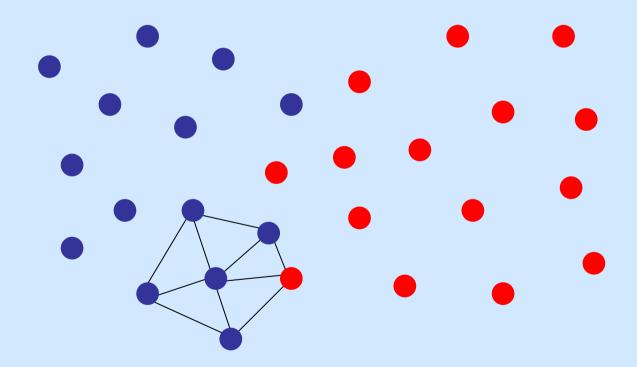
$$\beta \quad von \quad 0 \quad bis \quad (n - \alpha)$$


$$\gamma \quad von \quad 0 \quad bis \quad (n - \alpha - \beta)$$

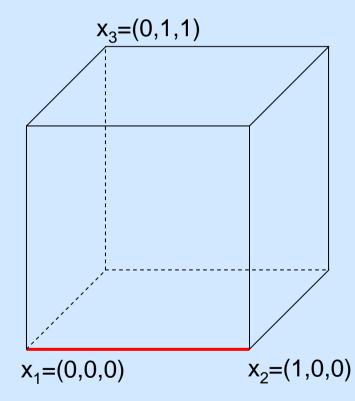





n-nächste-Nachbarn-Regel (n-nearest-neighbor-rule) n=5



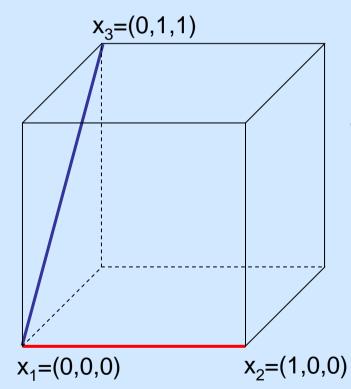
n-nächste-Nachbarn-Regel (n-nearest-neighbor-rule) n=5



Euklidischer Abstand

simple-matching distance

$$d_E(x_1, x_2) = 1$$



$$d_{SM}(x_1, x_2) = 1/3$$

Euklidischer Abstand

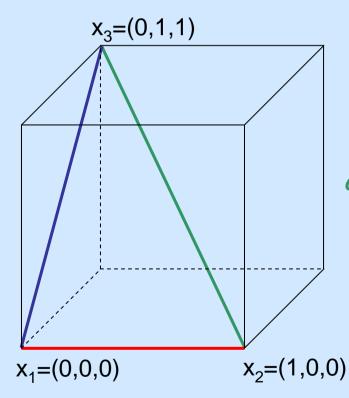
simple-matching distance

$$d_E(x_1, x_2) = 1$$

 $d_E(x_1, x_3) = \sqrt{2}$

$$d_{SM}(x_1, x_2) = 1/3$$

 $d_{SM}(x_1, x_3) = 2/3$


Euklidischer Abstand

simple-matching distance

$$d_{E}(x_{1}, x_{2}) = 1$$

$$d_{E}(x_{1}, x_{3}) = \sqrt{2}$$

$$d_{E}(x_{2}, x_{3}) = \sqrt{3}$$

$$d_{SM}(x_1, x_2) = 1/3$$

$$d_{SM}(x_1, x_3) = 2/3$$

$$d_{SM}(x_2, x_3) = 1$$

1.Fall: Zuordnung bis zum vierten Nachbarn entschieden

1.N.	2.N.	3.N.	4.N	5.N.
1/50	1/50	1/50	2/50	2/50

1.Fall: Zuordnung bis zum vierten Nachbarn entschieden

1.N.	2.N.	3.N.	4.N	5.N.
1/50	1/50	1/50	2/50	2/50

Entscheidung nach der 5 nächsten-Nachbarn-Methode

2.Fall: Zuordnung bis zum vierten Nachbarn nicht entschieden

1.N.	2.N.	3.N.	4.N.	5.N.	6.N.	7.N.
1/50	1/50	2/50	3/50			
•						

2.Fall: Zuordnung bis zum vierten Nachbarn nicht entschieden

1.N.	2.N.	3.N.	4.N.	5.N.	6.N.	7.N.
1/50	1/50	2/50	3/50	3/50	3/50	4/50

2.Fall: Zuordnung bis zum vierten Nachbarn nicht entschieden

	1.N.	2.N.	3.N.	4.N.	5.N.	6.N.	7.N.
•	1/50	1/50	2/50	3/50	3/50	3/50	4/50

Entscheidung nach der 6 nächsten-Nachbarn-Methode

Reklassifikation nach der Lachenbruch-Methode

Jeder Datensatz x wird einzeln aus der Datei entfernt und bezüglich der Restdatei (Lernstichprobe) klassifiziert. Anschließend wird der Datensatz wieder hinzugefügt.

		il		
		Gruppe 1	Gruppe 2	
0110	Gruppe 1	n ₁₁	n ₁₂	n _{1•}
aus	Gruppe 2	n ₂₁	n ₂₂	n _{2•}
		n •1	n •2	n

$$\frac{n_{11} + n_{22}}{n}$$
 Maß für die Richtigklassifikation

$$\frac{n_{12} + n_{21}}{n}$$
 Maß für die Falschklassifikation

Reklassifikation beim abbauenden Verfahren

Anzahl	Reduzierte	Morbus Wegner		Kontrollgruppe	
	Variable	richtig	falsch	richtig	falsch
58		12	15	14	14
57	Neubau	14	13	19	9
56	Infektionsanzahl	15	12	20	8
55	Myk_IgA	15	12	21	7
54	Blut 0	16	11	23	5
53	Land	18	9	24	4
52	CMV_IgM	19	8	24	4
51	Toxo_IgM	19	8	24	4
50	PBV_IgG	19	8	25	3

Reklassifikation beim abbauenden Verfahren

Anzahl	Reduzierte	Morbus Wegner		Kontrollgruppe	
	Variable	richtig	falsch	richtig	falsch
32	Katze	20	7	26	2
31	Hund	21	6	26	2
30	Röteln	22	5	25	3
29	Parfüme	22	5	25	3
28	Hydrocarbon	22	5	26	2
27	Altbau	22	5	25	3
26	Scharlach	22	5	24	4
25	Blut A	22	5	25	3
24	CMV_PCR	23	4	24	4

Reklassifikation beim abbauenden Verfahren

Anzahl	Reduzierte	Morbus Wegner		Kontrollgruppe	
	Variable	richtig	falsch	richtig	falsch
11	Pilze	24	3	23	5
10	Masern	25	2	23	5
9	Blut Rhesus	25	2	24	4
8	Blut B	24	3	24	7
7	Tonsillenektomie	24	3	22	6
6	andere Säuger	24	3	21	7
5	Grippe	24	3	23	5
4	Metalle	22	5	25	3
3	Allergien	20	7	23	5

Die Diskriminanzanalyse für binäre Daten und das abbauende Verfahren sind als Makro-Programme unter Verwendung von Prozeduren aus SAS/STAT und PROC IML geschrieben.

Interessenten können die Programme anfordern unter:

bjaeger@biometrie.uni-greifswald.de