

KSFE 2002 Dortmund, 1. März 2002

eRandom

das SAS®-Produkt für Randomisierungen in F&E unter GCP- (Good Clinical Practice) Anforderungen
Eine gemeinsame Entwicklung von
SAS Deutschland und der Schering AG

Hannes-Friedrich Ulbrich Schering AG, Berlin

Einführung

Randomisierung
 (pseudo-)zufällige Zuordnung von
 Versuchsbedingungen zu Versuchseinheiten

- Durchführung einer Randomisierung
 - Würfel
 - Zufallszahlen: Tabellen
 - Generator
 - PROC PLAN
- Anforderungen im Umfeld klinischer Prüfungen
 - Behördensicht
 - Informatikers Sicht
 - Biometrikers Sicht
 - ⇒ Übersicht über das SAS®-Produkt **eRandom**

Entwicklungspartnerschaft

- Randomisierung bei Schering
 - Eigenentwicklungen (Anfang der 80er und Mitte der 90er Jahre)
 - Umfeldänderungen (IT, Prozesse) was nun?
 - Inhouse Entwicklung oder Kaufsoftware?
 - Analyse (Markt / pers. Gespräche): nichts adäquates
- Partnerschaft mit Marktführer
 - SAS Deutschland
 - Applikations-know how
 - Entwicklung
 - Maintenance & Support
 - Marktkompetenz
 - Schering
 - Randomisierungs-know how
 - Entwicklungspartner
 - Erstkunde

Entwicklungspartnerschaft

- Eigenentwicklungen (Anfang der 80er und Mitte der 90er Jahre)
- Umfeldänderungen (IT, Prozesse) was nun?
- Inhouse Entwicklung oder Kaufsoftware?
- Analyse (Markt / pers. Gespräche): nichts adäquates

Partnerschaft mit Marktführer

- SAS Deutschland
 - Applikations-know how
 - Entwicklung
 - Maintenance & Support
 - Marktkompetenz
- Schering
 - Randomisierungs-know how
 - Entwicklungspartner
 - Erstkunde

SAS Professional Services Projektleiter: S. Smialowski

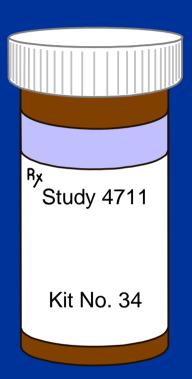
Projektleitung & IT:

K. Holzapfel

Biometrie: H.-F. Ulbrich

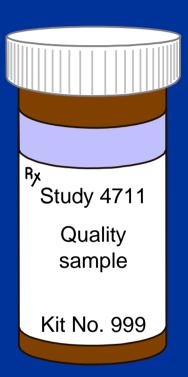
Anforderungen: Informatiker

- Innovative Architektur und Tools (modular, Web, Java)
- Konfigurierbares System
 - I/O Schnittstelle(n) zu Fremdsystem(en)
 - Administration
 - Nutzer
- Zugriffe (Intranet, Extranet, Internet)
 - Rollenbasiertes Sicherheitskonzept
 - Typische, global agierende Strukturen firmenintern: EU (4), US (2), J (2)
 - extern (adaptive Randomisierungsdesigns): IVRS, CRO, andere Dienstleister
- 24 h Erreichbarkeit
- Archivierung


Gewährleistung von Behörden-und Guidelineforderungen

- Verblindung des Biometrikers
- Auditierbarkeit
 u.a. lokale Zeit des Nutzers + Server-Zeit
- Wiederholbarkeit der Randomisierung unter Auditbedingungen
- Sicherheitsaspekt:
 - Arzneimittelsicherheit kontrollierte Einzelfall-Entblindung

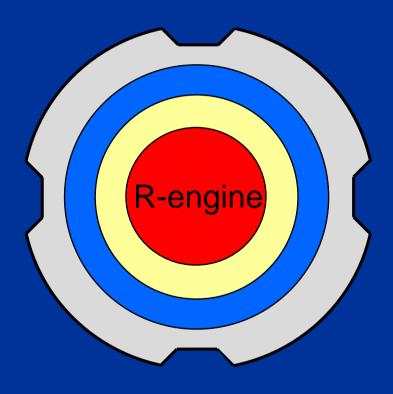
- Prüfpräparate-Service:
 - Rückstell-Muster
 - Daten-Integration



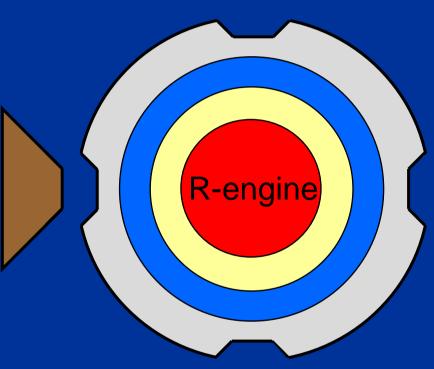
- Gewährleistung von Behörden-und Guidelineforderungen
 - Verblindung des Biometrikers
 - Auditierbarkeit
 u.a. lokale Zeit des Nutzers + Server-Zeit
 - Wiederholbarkeit der Randomisierung unter Auditbedingungen
- Sicherheitsaspekt:
 - Arzneimittelsicherheit kontrollierte Einzelfall-Entblindung

- Prüfpräparate-Service:
 - Daten-Integration
 - Rückstell-Muster

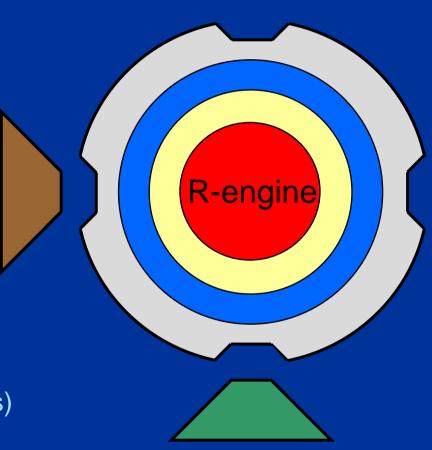
- Gewährleistung von Behörden-und Guidelineforderungen
 - Verblindung des Biometrikers
 - Auditierbarkeit
 u.a. lokale Zeit des Nutzers + Server-Zeit
 - Wiederholbarkeit der Randomisierung unter Auditbedingungen
- Sicherheitsaspekt:
 - Arzneimittelsicherheit kontrollierte Einzelfall-Entblindung


- Prüfpräparate-Service:
 - Daten-Integration
 - Rückstell-Muster

- stand alone-Fähigkeit
 - ohne Berücksichtigung firmeninterner Systeme
 - nutzbar durch
 CRO/Dienstleister
 - nichtklinische Studien
- Erweiterbarkeit
 - durch SAS
 - durch den Nutzer (adapt.
 Randomisierungsdesigns)



Markt:


- stand alone-Fähigkeit
 - ohne Berücksichtigung firmeninterner Systeme
 - nutzbar durch
 CRO/Dienstleister
 - nichtklinische Studien
- Erweiterbarkeit
 - durch SAS
 - durch den Nutzer (adapt.
 Randomisierungsdesigns)

Markt:

- stand alone-Fähigkeit
 - ohne Berücksichtigung firmeninterner Systeme
 - nutzbar durch
 CRO/Dienstleister
 - nichtklinische Studien
- Erweiterbarkeit
 - durch SAS
 - durch den Nutzer (adapt. Randomisierungsdesigns)

- Randomisierung
 - (pseudo-)zufällige Zuordnung von Versuchsbedingungen zu Versuchseinheiten
 - oft zugunsten optimierter Versuchsbedingungen eingeschränkt
 - → Randomisierungsdesigns
- Pharmabereich: spezielle Anforderungen
 - Verblindung: Patienten, Ärzte, Studienpersonal
 - Realisierung der Randomisierung:
 - multizentrische Studien: Verteilung der Medikation
 - Auditierfähigkeit
 - Ersatzpatient (Abbruch) oder -medikation (bei Verlust)

- Randomisierung
 - (pseudo-)zufällige Zuordnung von Versuchsbedingungen zu Versuchseinheiten
 - oft zugunsten optimierter Versuchsbedingungen eingeschränkt
 - → Randomisierungsdesigns
- Pharmabereich: spezielle Anforderungen
 - Verblindung: Patienten, Ärzte, Studienpersonal
 - Realisierung der Randomisierung:
 - multizentrische Studien: Verteilung der Medikation
 - Auditierfähigkeit
 - Ersatzpatient (Abbruch) oder -medikation (bei Verlust)

- adaptives Randomisierungsdesign
 - schrittweise Zuordnung
 - (n+1)-ter Schritt abhängig von
 - aktuellem Stand der Balanziertheit
 - Eigenschaften der (n+1)-ten Versuchseinheit
 - Ergebnissen der n vorherigen Versuchseinheiten
 - logistisch sehr aufwendig
 - besonders, wenn multizentrisch & multinational
 - zentrale Randomisierung "allzeit" abrufbereit (z.B. IVRS-unterstützt)

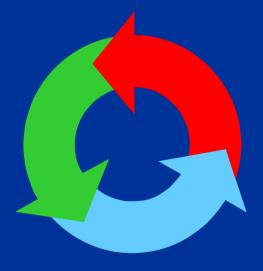
- adaptives Randomisierungsdesign
 - schrittweise Zuordnung
 - (n+1)-ter Schritt abhängig von
 - aktuellem Stand der Balanziertheit
 - Eigenschaften der (n+1)-ten Versuchseinheit
 - Ergebnissen der n vorherigen Versuchseinheiten
 - logistisch sehr aufwendig
 - besonders, wenn multizentrisch & multinational
 - zentrale Randomisierung "allzeit" abrufbereit (z.B. IVRS-unterstützt)

- adaptives Randomisierungsdesign
 - schrittweise Zuordnung
 - (n+1)-ter Schritt abhängig von
 - aktuellem Stand der Balanziertheit
 - Eigenschaften der (n+1)-ten Versuchseinheit
 - Ergebnissen der n vorherigen Versuchseinheiten
 - logistisch sehr aufwendig
 - besonders, wenn multizentrisch & multinational
 - zentrale Randomisierung "allzeit" abrufbereit (z.B. IVRS-unterstützt)

- Randomisierungserfolg:
 ein Patient wird ggf. unter Verblindung behandelt
 - mit der richtigen Medikation
 - zur richtigen Zeit
 - an der richtigen Stelle
- Behandlungsschema (treatment regimen)
 - = Versuchsbedingung
- Medikationseinheit (medication kit)
 - := kleinstes einzeln identifiziertes Prüfpräparat, z.B.
 - eine Spritze
 - ein Blister (mit 21 Pillen für 1 Zyklus)
 - eine Tube oder Flasche

- Randomisierungserfolg: ein Patient wird - ggf. unter Verblindung - behandelt
 - mit der richtigen Medikation
 - zur richtigen Zeit
 - an der richtigen Stelle
- Behandlungsschema (treatment regimen)
 - = Versuchsbedingung
- Medikationseinheit (medication kit)
 - := kleinstes einzeln identifiziertes Prüfpräparat, z.B.
 - eine Spritze
 - ein Blister (mit 21 Pillen für 1 Zyklus)
 - eine Tube oder Flasche

- Randomisierungserfolg:
 ein Patient wird ggf. unter Verblindung behandelt
 - mit der richtigen Medikation
 - zur richtigen Zeit
 - an der richtigen Stelle
- Behandlungsschema (treatment regimen)
 - = Versuchsbedingung
- Medikationseinheit (medication kit)
 - := kleinstes einzeln identifiziertes Prüfpräparat, z.B.
 - eine Spritze
 - ein Blister (mit 21 Pillen für 1 Zyklus)
 - eine Tube oder Flasche



Design eines klinischen Versuches

Patienten

- randomisierungsrelevante Prozesse:
 - Randomisierungs-Nr. Medikationseinheits-Nr.
 - Randomisierung <u>vor</u>
 Medikationseinheits-Identifizierung (labeling)
 - einmalige Zufallszahlengenerator-Anwendung
 - Randomisierungs-Nr. ≠ Medikationseinheits-Nr.
 - Randomisierung <u>nach</u> Medikationseinheits-Identifizierung
 - viel flexiblerer Prozess
 - "Doppelte Randomisierung"

- randomisierungsrelevante Prozesse:
 - Randomisierungs-Nr. Medikationseinheits-Nr.
 - Randomisierung <u>vor</u>
 Medikationseinheits-Identifizierung (labeling)
 - einmalige Zufallszahlengenerator-Anwendung
 - Randomisierungs-Nr. # Medikationseinheits-Nr.
 - Randomisierung <u>nach</u> Medikationseinheits-Identifizierung
 - viel flexiblerer Prozess
 - "Doppelte Randomisierung"

- Randomisierungsdesign-Klassen
 - k parallele Gruppen
 - blockweise Allozierungsverhältnisse
 - mit "Ersatzpatienten" (Phase I)
 - vollständige & unvollständige Blockanlagen
 - cross-over
 - bis zu zwei Störfaktorvariablen (z.B. Zeit, Lage)
 - Lateinische Quadrate
 - adaptive Randomisierungsdesigns
 - · Efron's biased coin
 - Minimierung mit Zufallswichtung
 - Nutzer-programmierte Algorithmen
 - "blinded reader" designs (mit Mindestabstand)

- Randomisierungsdesign-Klassen
 - k parallele Gruppen
 - blockweise Allozierungsverhältnisse
 - mit "Ersatzpatienten" (Phase I)
 - vollständige & unvollständige Blockanlagen
 - cross-over
 - bis zu zwei Störfaktorvariablen (z.B. Zeit, Lage)
 - Lateinische Quadrate
 - adaptive Randomisierungsdesigns
 - . Efron's biased coin
 - Minimierung mit Zufallswichtung
 - Nutzer-programmierte Algorithmen
 - "blinded reader" designs (mit Mindestabstand)

- eRandom zwischen study design module & R-engine
 - R-engine = zentrale "Randomisierungsmaschine"
 - k parallele Gruppen (einfach & blockweise)
 - Lateinische Quadrate
 - adaptive Randomisierungsdesigns
 - Permutation vorhandener Objekte mit Nebenbedingung
 - Study Design Module
 - Schnittstelle zum Nutzer (zum Randomisierenden)
 - Design-spezifische Eingabeschirme
 ([un]vollständige Blockanlagen: Wandlung zu k-parallel)

- eRandom zwischen study design module & R-engine
 - R-engine = zentrale "Randomisierungsmaschine"
 - k parallele Gruppen (einfach & blockweise)
 - Lateinische Quadrate
 - adaptive Randomisierungsdesigns
 - Permutation vorhandener Objekte mit Nebenbedingung
 - Study Design Module
 - Schnittstelle zum Nutzer (zum Randomisierenden)
 - Design-spezifische Eingabeschirme
 ([un]vollständige Blockanlagen: Wandlung zu k-parallel)

- eRandom zwischen study design module & R-engine
 - R-engine = zentrale "Randomisierungsmaschine"
 - k parallele Gruppen (einfach & blockweise)
 - Lateinische Quadrate
 - adaptive Randomisierungsdesigns
 - Permutation vorhandener Objekte mit Nebenbedingung
 - Study Design Module
 - Schnittstelle zum Nutzer (zum Randomisierenden)
 - Design-spezifische Eingabeschirme ([un]vollständige Blockanlagen: Wandlung zu k-parallel)

Funktionalitäten

Zentrale Randomisierungs-Beauftragte

Studien-Biometriker Zentrale Randomisierungs-Beauftragte

Import der Liste von Medikations-einheits-Nr und Erzeugung einer Testversion

Testrandomisierung Produktionsrandomisierung

- Sprachversionsunterscheidung;
- Testv. = Permutation:Verblindung erhaltend

- Funktionalitäten
 - Allozierungsverhältnis
 - generell oder blockweise definierbar
 - auch :0 möglich
 - Ergebnis:
 Behandlungsschema & Medikationseinheits-Nr.
 - Nachrandomisierung (nichtadaptive Designs)
 - Fall-Widerruf (adaptive Randomisierungsdesigns)

- Funktionalitäten
 - Allozierungsverhältnis
 - generell oder blockweise definierbar
 - auch :0 möglich
 - Ergebnis:
 Behandlungsschema & Medikationseinheits-Nr.
 - Nachrandomisierung (nichtadaptive Designs)
 - Fall-Widerruf (adaptive Randomisierungsdesigns)

Informations-Plattformen

 eRandom Marketing(unterstützung) durch Schering

10/2000:	PSI meeting, GlaxoWellcome, UK	IT & Biometriker
12/2000:	APF-Treffen, Schering, Berlin	Biometriker
10/2001:	DISK 2001, Stuttgart	IT & Biometriker
03/2002:	KSFE 2002, Universität Dortmund	Biometriker

eRandom-Überblick:

- regulatorisch
 - auditierfähig
 - reproduzierbare Random.
 - "Blindheit"-sichernd

- informationstechnisch
 - web-basierend
 - schnittstellen-konfigurierbar
 - 24-h-fähig
 - Rollenkonzept
 - bedienfehler-robust
 - erweiterbar

- prozess-unterstützend
 - ohne Medikationsnr.-Liste
 - mit Medikationsnr.-Liste
 - stand-alone-fähig
 - in IT-Landschaft einbindbar

- biometrisch
 - klassische Random-Designs
 - adaptive Random-Designs

Perspektiven / Ausblick

3 Zukunftswünsche

Viele eRandom Nutzer

 Erfolgreiche Partnerschaft Schering - SAS Germany

hannesfriedrich.ulbrich@schering.de

kirstin.holzapfel@schering.de stefan.smialowski@ger.sas.com

