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Abstract 

Real data dose-response measurements stored in huge databases do not always fulfil the 
requirements for a successful typical sigmoidal curve fit. The problems appear when 
measuring an improper dose range, when not having enough measurements or when the re-
sponse is measured by visual assessment. Even though, indicators of the behaviour of the 
measured item are still needed, therefore the statistical algorithm used for the calculus has 
to adapt to the given circumstances. The automatic best-of-fit estimation procedure pre-
sented in this paper addresses this challenge by using a proper package of models and a 
filter based on the Akaike information criterion. The automatic aspect of the procedure 
contributes to the usability of the implemented routine in the IT landscape of the client.   
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1 Introduction 
The denomination “dose-response" analysis indicates that responses of some examina-
tions are measured in dependence of certain dose administrations. Here, “dose” could 
represent the amount of an active ingredient in a pharmaceutical product used in the 
healing process of a patient or the concentration of a plant protection chemical product.  
The “response” is usually the probability of occurrence of an event of interest like the 
healing of the patient, the non-appearance of secondary effect like toxicity or the mor-
tality of fungi and insects in the case of plant protection products. In the preclinical 
studies of the pharmaceutical research and the leadfinding and greenhouse studies of the 
plant protection research, trials for the analysis of dose-responses are planned, with the 
scope of the formulation of the case adequate doses. In the early stages of the research   
of life sciences disciplines, the number of the substances in the screening process is 
huge, leading to databases of dose-response measurements in the magnitude of tera-
bytes. Therefore, automatic statistical routines need to be implemented, to deliver at a 
push of a button, useful indicators for the analysis of a single dose-response curve like 
effective doses at x% response, slopes or confidence intervals. In the case several sub-
stances need to be compared, parameters of interest are for example activity ratios or 
test statistics for the log-parallelism. Combinations of substances imply other parame-
ters of interest like the indicator for synergism or antagonism.  We will restrict in this 
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paper to a statistical algorithm designed for the automatic calculus for the analysis of a 
single dose-response curve.  

2 User requirements for the statistical algorithm 
At the entry of a new dose-response curve of a chemical compound in the database, the 
automatic statistical algorithm calculates the parameters of interest and delivers the re-
sults back into the database. The user can access the report via the desired front-end. 
Assume that the general functional requirements for the statistical algorithm for the 
analysis of a single dose-response curve are the following: 

• The statistical algorithm should generally model S-shaped or sigmoidal dose-res-
ponse curves. Even though, in case of different systematic errors, the sigmoidality 
of the curve can get lost. The algorithm should be able to capture valuable infor-
mation also out of these cases.  

• The statistical algorithm should deliver valuable reports for compounds starting 
with a minimum of two measured doses and one replication per dose.  

• The statistical algorithm should deal with responses measured on different scales, 
like continuous, percentage or binary. Moreover it should also capture special ca-
ses of the scaling like, negative percentages (this could appear for example in the 
plant protection case of reproduction measurements).  

• The statistical algorithm should capture all particular cases of dose-response cur-
ves arising usually in the case of visual assessment (like equal responses for all 
treated doses) and treat them accordingly.  

• The developed program should deliver following estimated parameters: The esti-
mated effective dose values at 50% response (ED50) which is defined as the point 
of inflection of the sigmoidal dose-response curve. Moreover, the corresponding 
confidence intervals, the calculated slope in ED50, the dose points at certain val-
ues of the response and the corresponding confidence intervals. Additionally, 
pseudo R² values should be recorded for each fitted dose-response curve. 

• The statistical algorithm should be implemented via the SAS System. The enclo-
sure of the statistical algorithm as a database automatic application should be in-
cluded in the SAS development.     

 
One can immediately remark, that the user functional requirements are intended to 
cover a very bright range of dose-response measurements. Therefore, a suitable package 
of modelling functions to cover all requirements will be defined. For each entry in the 
database the best-of-fit model will be searched by a well-defined procedure and the cor-
responding outputs are created.  

3 The automatic process of the dose-response calculus 
We will restrict this paper to the description of the statistical algorithm and not go to the 
development of the enclosure into the database landscape applications. Before we go 
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into the details of the adopted statistical algorithm, we present the final process view of 
the implemented SAS program. A simplified picture of the solution has the form:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Picture 1: Implementation process of the statistical algorithm 
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4 The data input and preparation step 
As in the requirements mentioned, the response can be of several types:  It can be a bi-
nary outcome (i.e. success or failure), a percentage (i.e. percentage of mortality or a 
percentage visual assessment) or a continuous outcome on the real line. Therefore, suit-
able transformations of the responses are applied to restrict the dose-response modelling 
curves to the following two functional forms: 
 

[ )∞⊂→ ,0],1,0[: DDf  or [ )∞⊂ℜ→ ,0,: DDf , 
 
where D is the domain of the dose points. The transformation could be done either by 
using indicators for the type of the measurement or by suitable separately created algo-
rithms.  
 
The next important issue in the preparations of the data for a dose-response analysis is 
the consideration of the special cases. Examples of some special cases of dose-response 
curves are:  
 
Special Case 1:  
The response is constant for every dose (i.e. in case of no response Dxxf ∈∀= ,0)( ).  
 
Special Case 2: 
The response takes only two values (i.e. 1,0)( Dxxf ∈∀=  and 

2,1)( Dxxf ∈∀= , DDD =∪ 21 ). 
 
These special cases arise mostly in the case of subjective visual assessment responses. 
For example, instead of a more detailed differentiation between two unsuccessful doses, 
the assessor confers them a constant response.  
 
The generalized form of the special cases arises from a theorem for the existence of the 
Maximum-Likelihood estimation (estimation method used for a part of the models). 
Summarized, the theorem asserts that the Maximum-Likelihood estimator exists and is 
unique if in the case of one replication per dose, the array of responses contains a mini-
mum of two jumps. These special cases are treated separately and they are not subject 
for the actual modelling. The outcome of the special cases is directly stored in the final 
report. For a theoretical background of the special cases, consult (Unkelbach and Wolf 
(1985)).  
 
Regardless of the special cases, the dose-response curves are modelled by using a prede-
fined set of models via the Maximum Likelihood estimation (i.e. proc probit models) 
and a set of models via the Least Squares estimation (i.e. proc nlin models). In view of 
the modelling with proc nlin, suitable starting values have to be calculated for the dose-
response curves, this step belonging also to the data preparations step- More about this 
follows in the next chapter.  
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5 The modelling step  
A package of models suitable for the accomplishment of the requirements is defined: 
 
The four parametric logistic model (SAS procedure: proc nlin) 
 
 
 
 
The three parametric logistic model (with fixed minimum) (SAS procedure: proc nlin) 
 
 
 
 
The three parametric logistic model (with fixed maximum) (SAS procedure: proc nlin) 
 
 
 
 
The five parametric logistic model (additional location parameter)  
(SAS procedure: proc nlin) 
 
 
 
 
 
The two parametric generalized linear model (GLM) with logistic link 
(SAS procedure: proc probit) 
 
 
 
 
The two parametric GLM with normal link 
(SAS procedure: proc probit) 

 
 
The two parametric GLM with Gompertz link 
(SAS procedure: proc probit) 
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The reasons for the composition of the model package arise from the functional re-
quirements of the statistical algorithm:  
The GLM models implemented with proc probit are designed to model the probability 
of success of an event, therefore suitable for the first functional form mentioned in §4. 
The rest of the models, implemented with proc nlin, address the second functional form, 
for continuous responses on the real line. The proc nlin models also succeed to resolve a 
special case of dose-response curves: The case of percentage responses which could be 
negative or larger than 100%. This case appears for example in the case of reproduction 
of the insects: The mortality can be larger relative to the precount before the treatment 
application.  
Sometimes you want to fix a parameter at a certain value, rather than estimating it, this 
is the case for the models with three parameters. This is useful if you do not have 
enough data to estimate all parameters precisely and/or you know the value a parameter 
should take on. In our case, theory tells us that d, the upper asymptote of the response, 
should be 1, since the response is expressed relative to a control value from which it 
should monotonically decrease, or c, the lower asymptote of the response should be 0. 
These would be the cases of the three parametric logistic regressions.  
The five parametric logistic regression is used to detect a special case in the plant pro-
tection case which is called hormesis. In this case, it can happen that the responses for 
some small doses are larger than the control response, therefore a fifth parameter for a 
linear shift in the sigmoidal shape is introduced. For more details about this functional 
form, see (Schabenberger & other (1999)).  
Moreover, the constitution of model package addresses the problematic of diverse trial 
designs (models with fewer parameters resolve the designs with fewer observations 
while models with a larger number of parameters protect against underfit).  
 
The starting values for the proc nlin models have to be calculated in an a-priori step and 
temporary stored. The quality of the starting values is an essential criterion in the mod-
elling step. One reason is that the quality of the starting values flows directly into the 
quality of  the final estimators. Another reason is the speed of convergence of the proc 
nlin procedures. The starting values are calculated via an a-priori transformation and re-
gression step of the data (Ritz and Streibig (2005)). A general theory for the nonlinear 
regression with proc nlin can be also find at the Web Site of UCLA Academic Technol-
ogy Services (see Literature).  

6 The filter step 
For each dose-response entry, we fit the seven models defined in the preceding to the 
entry data. The fitted models will pass through a goodness-of-fit filter in order to define 
the best-of-fit model which will be finally used for the report of the requirements re-
sults. The filter is constructed in two steps: First, the convergence status of each fitted 
model is checked. If the convergence status is without errors (convergence status=0), 
then the model goes to the next filter step. In the next filter step, the Akaike information 
criterion (and the Akaike information criterion corrected for small samples (Hurvich 
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and Tsai (1989)) is calculated for each model. Moreover, the size of the confidence in-
terval for the ED50 estimator is calculated. In the last step, the Akaike values are com-
pared through the models and the model with the smalles Akaike value is picked out. If 
there are two such models, then the one with the smallest confidence interval becomes 
the best-of-fit model.  
The Akaike information criterion (AIC), defined by Hirotogu Akaike in 1973, is minus 
twice a penalized log-likelihood value, maximized using the maximum-likelihood esti-
mator of the unknown parameter. The AIC selects the best approximating model to the 
unknown true data, amongst the set of models under consideration. Even if our models 
are based not only on the maximum likelihood estimation but also on the least squares 
estimation, we have involved the AIC measure into the model selection step relying on 
the fact that the AIC criterion is constructed via an estimated expected value of the 
Kullback-Leibler (KL) distance from the unknown true data generating mechanism and 
the parametric model under consideration. The KL distance between two models is in-
dependent of the estimation procedure. The used AIC formula is 
 
 
 
 
where N is the total sample size ,      the residual sum of squares and p the number of 
parameters involved in the model. For more subject relevant information about the used 
AIC criterion, see (Motulsky and Christopoulos (2003)).  
 
There are certainly other measures for the model selection step. We have restricted the 
model selection to the AIC (respectively the corrected AIC) since the AIC, compared to 
the Bayesian information criterion (BIC) is efficient. The efficiency leads to a better 
prediction power of the AIC criterion.  The statistical algorithm can be extended to the 
use of other information criteria.  

6.1 The filter for the proc nlin models 
Two following output tables from the proc nlin procedures are needed for the filter of 
the models: The Anova table output and the ConvergenceStatus table output, both to be 
called via the ods line. As the name says, the ConvergenceStatus table is needed for the 
convergence status of the grid search algorithm. The Anova table is needed for the cal-
culus of the AIC criterion and moreover, for the calculus of the pseudo R² measure. 

6.2 The filter for the proc probit models  
The following ouput tables from the proc probit models are needed for the filter of the 
models: The output table with the predicted values for the calculus of the AIC and R² 
criterion and the ConvergenceStatus table for the indicator of the convergence status for 
the maximum likelihood estimation.  
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CorrTotalSS

7 The output to be reported 
The model succeeding through the defined filter is called the best-of-fit model and it is 
used for the further reporting of the estimated parameters of interest. The parameters of 
interest, called in the requirements are: 
 
• The pseudo R² measure of the model 
 
 
 
 
where we have denoted by    the residual sum of squares and by  
the corrected total sum of squares. 
 
• The effective dose at 50% response (ED50) and the corresponding 

confidence interval 
There are several definitions of the ED50 values in literature. Here, the ED50 is the 
point of inflection of the fitted curve. A necessary condition for x to be an inflection 
point, is that  

 
Moreover, a sufficient condition for x to be an inflection point requires that 
 

and 
 
to have opposite signs.  
 
• The Dx∈  value such that f(x)=0.5 (denoted by x@y=0.5) and the 

corresponding confidence interval  
Per definition, this is  
 
 
The existence of this value depends of the response scale. If the value is not well-de-
fined, the calculus will lead to an empty cell of the report.  
 
• The calculated slope in the inflection point (denoted by slope) 
Per definition, this is 
 

7.1 The output for the proc nlin models 
Assume that the best-of-fit model arises from the estimation via the proc nlin procedure.  
The R² measure is calculated from the Anova ods table of the proc nlin. Since the ED50 
is a parameter in the proc nlin models, the estimated ED50 and the corresponding confi-
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dence interval are extracted from the ParameterEstimates ods table. The inverse and the 
derivative of the proc nlin models need to be calculated and programmed in a separate 
step and then applied to the estimated ED50 from the ParameterEstimates ods table to 
obtain the x@y=0.5 and the slope in ED50 values. For the calculus of the confidence in-
tervals for the x@y=0.5 value, proc nlin needs to be run again and the predicted value 
will lead to the desired confidence interval.  

7.2 The output for the proc probit models  
Assume that the best-of-fit model arises from the estimation via the proc probit proce-
dure. As we have mentioned in the paragraph before, the R² measure is calculated di-
rectly from the predicted values. In case of the proc probit models, the point of inflec-
tion is exactly the inverse in y=0.5, i.e. f(ED50)=0.5. The ED50 and the corresponding 
confidence interval are extracted from the ods table ProbitAnalysis. The slope needs to 
be calculated separately via the derivative of the implied model function.  
 
All the required estimated parameters of interest are gathered together in one output ta-
ble which is then reported for each dose-response item in the database. For each dose-
response item, a graphic containing the measured samples, the estimated best-of-fit 
curve and the confidence area can be attached to the report. The graphical output is not 
subject of this proceeding paper. Nevertheless, as a remark, the graphics for the proc 
probit models can be reported automatically via the gout and predplot options of proc 
probit.  

8 Summary 
The established model package covers all the assumed user functional requirements. For 
every dose-response item for which an estimation with valid confidence intervals is pos-
sible, an output is created. Only if none of the models in the package converged to a 
solution (for the proc nlin models respectively proc probit models) there is no output for 
the dose-response item created. The case of non-convergence of every model corre-
sponds to the case where a valid estimation of the ED50 is really not possible. Special 
cases are treated separately. The filter for the best-of-fit model based on the Akaike in-
formation criterion assures not only the estimation of the parameters of interest via the 
model with smallest residual sum of squares but also a good prediction power of the 
chosen model. One can certainly test the performance of the statistical algorithm by us-
ing other information criteria. The automatic development of the statistical algorithm 
assures a user-friendly push at a button report for every dose-response item to be ana-
lyzed. The automatic statistical algorithm can be imbedded into several standard SAS 
front-ends: As a stored process via SAS Enterprise Guide, via Microsoft Word or Mi-
crosoft Excel with the SAS Office Add-In or via a customized Web Front-End. 
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