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Abstract

Survival analysis often deals with biological and medical data. In this article we apply

methods of survival analysis to an actuarial dataset to identify significant covariates for

canceling a contract. In our approach we use the well known risk models suggested by Cox

and Aalen which we recapitulate briefly. Furthermore, we compare the methods using a

goodness of fit test.
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1 Introduction

Usually, survival analysis is applied in medicine or biology. But there are also other fields

of applications, e.g. system or software reliability (e.g. Gandy & Jensen [8]) or actuarial

mathematics (e.g. Czado & Rudolph [6]). In our paper we will use models of survival

analysis in an actuarial context. The dataset we are considering stems from a German

insurance company and contains information about private accident insurance contracts.

Generally, in survival analysis the time to death of an individual or a system is examined.

We investigate the time from the conclusion until the cancellation of a contract. Our

dataset does not only consist of information about the time to cancellation. There are

several other attributes given about the insurance holder and the person insured: age,

number of persons insured, amount of the annual premium, insurance sums covering death

or disablement, etc. Our main goal is to investigate in which way the attributes influence

the cancellation of contracts. The dataset consists of more than 100 000 contracts each

with about 70 attributes. For our analysis we extracted a smaller dataset of about 30 000

contracts.

The models we use to examine the data are well known in survival analysis: the Cox model

and the Aalen model. Cox [5] and Aalen[1] provide methods for exploring the association

of covariates with failure rates. Both models are discussed in detail in Andersen et al. [3]

and Fleming & Harrington [7]. We want to introduce them briefly. Of course, there exist

several other regression models, see e.g. Scheike & Zhang [12] but we confine ourselves to

these two.

We will consider n different contracts in both models and henceforth N(t) = (Ni(t), i =

1, ..., n) is an n-variate counting process. In our application, the time, indicated by t,

measures the duration of a contract and Ni(t) = 1 if contract i has been canceled up to

time t and Ni(t) = 0 otherwise. Furthermore, we transform our observed attributes into

numerical covariates. For each contract i we have p covariates.

In Aalen’s model we denote the value of the covariates at time t with Yi1(t), ..., Yip(t),

which are all 0 if the individual is not at risk. We assume that the intensity λ(t) =

(λ1(t), ..., λn(t)) of N(t) can be written as

λi(t) =

p
∑

j=1

Yij(t)αj(t)
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where αj(t) are unknown deterministic baseline intensities which need to be estimated.

In the Cox model we denote the covariates with Zi1(t), ..., Zip(t). It is possible that these

covariates differ from those of the Aalen model. Now the intensity λ(t) = (λ1(t), ..., λn(t))

is given by

λi(t) = λ0(t) exp{βTZi(t)}Ri(t),

where β ∈ R
p is an unknown parameter vector, λ0(t) is the baseline hazard function and

Ri(t) is a process taking only values 1 or 0 which indicates whether an individual is at

risk or not.

The paper is organized as follows: Section 2 provides an introduction to the Cox model.

The estimation of its parameter β and the integrated baseline hazard function as well

as the use of martingale residuals for detecting the functional form of a covariate are

described. The Aalen model and the estimation of the integrated intensity
∫ t

0
α(s)ds are

explained in Section 3. A goodness of fit test of the Aalen model against the Cox model

concludes this section. The paper closes with the description of the dataset and the results

we found in our analysis.

2 The Cox Model

2.1 The Model

The Cox model is a multiplicative intensity model first introduced by Cox [5] and gen-

eralized for counting processes by Andersen & Gill [2]. Consider a multivariate counting

process N(t) = (Ni(t), i = 1, ..., n), t ∈ T = [0, τ ], 0 < τ < ∞, where each component

Ni(t) indicates the number of observed events up to time t for the ith subject. In our

case there is at most one event per subject: a contract can be canceled at most once. The

intensity λi(t) of Ni(t) is related to a vector of covariates Zi(t) in the following way

λi(t) = λ0(t)Ri(t) exp{βT Zi(t)}, i = 1, ..., n,

where Ri(t) is a predictable process taking only values 0 or 1 indicating whether the

ith subject is at risk at time t. The vector of regression coefficients is denoted by β.

The deterministic baseline hazard function λ0(t) is non-negative and is left completely

unspecified.
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2.2 Estimation in the Cox Model

The vector of regression parameters β and the integrated baseline hazard

Λ0(t) =

∫ t

0

λ0(u)du

are usually estimated by partial likelihood methods (see Andersen et al. [3]). The partial

likelihood is given by

L(β) =

n
∏

i=1

τ
∏

t=0

{

Ri(t) exp{βTZi(t)}
∑n

j=1 Rj(t) exp{βTZj(t)}

}∆Ni(t)

(1)

where ∆Ni(t) = Ni(t) − Ni(t−). The maximizer β̂ of L is called partial maximum

likelihood estimator. The cumulative hazard Λ0 can be estimated by the Breslow estimator

Λ̂0(t) =

n
∑

i=1

∫ t

0

dNi(s)
∑n

j=1 Rj(s) exp{β̂T
Zj(s)}

.

2.3 Martingale Residuals and Functional Form

The Cox model heavily relies on the functional form of the covariates Z. In applications it

is not clear whether one of the covariates, say X, should better be included in a different

functional form like X2 or log X. Therneau et al. [13] suggested to use martingale residuals

to determine the functional form of covariates graphically. Arguing differently we derive

similar results.

We consider only one individual and drop the index i. Let X and Z be stochastically

independent random covariates constant over time. We assume that the counting process

N admits the following intensity

λ(t) = h(X) exp{βTZ}R(t)λ0(t) = h(X)λ∗(t),

where h is an unknown positive function. Hence,

M(t) = N(t) −
∫ t

0

h(X)λ∗(s)ds = N(t) − h(X)Λ∗(t)

is a mean zero martingale. Forming conditional expectation with respect to X we get

E[M(t)|X] = E[N(t)|X] − h(X)E[Λ∗(t)|X].
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Since this is again a mean zero martingale we set, heuristically, E[M(τ)|X] equal to zero

and get

h(X) ≈ E[N(τ)|X]

E[Λ∗(τ)|X]
=

(

1 − E[N(τ) − Λ∗(τ)|X]

E[N(τ)|X]

)−1

.

In particular, we are interested in f(X) := log h(X). Using a first order Taylor expansion

we get

f(X) ≈ − log

(

1 − E[N(τ) − Λ∗(τ)|X]

E[N(τ)|X]

)

≈ E[N(τ) − Λ∗(τ)|X]

E[N(τ)|X]
.

Treating c = E[N(τ)|X] as constant it remains to estimate E[N(τ) − Λ∗(τ)|X] for which

we use the martingale residuals

M̂(τ) = N(τ) −
∫ τ

0

R(s) exp{β̂T
Z}dΛ̂0(s)

resulting from the Cox model ignoring X. To do so we smooth a scatterplot of M̂i(τ)

against Xi via robust locally weighted regression (see Cleveland [4]). To sum up plotting

the martingale residuals against X should give an idea of the functional form of X. A

linear scatterplot indicates that no further transformation of X is necessary. We have

carried out several simulation studies, which supported the validity of this heuristical

method.

3 The Aalen Model

3.1 The Model

An alternative to the Cox model is the additive risk model of Aalen [1]. As before let

T = [0, τ ], 0 < τ < ∞ be a fixed time interval and consider an n-variate counting process

N(t) = (Ni(t), i = 1, ..., n) together with a matrix of covariates Yij(t), j = 1, ..., p, p ≤ n

observed for each component Ni(t). The covariate Yij(t) is set equal to 0 if the individual

i is not at risk. The link between the covariates and the counting process is given by the

assumption that the intensity process λi(t) of Ni(t) can be written as

λi(t) =

p
∑

j=1

Yij(t)αj(t), t ∈ T

where αj(t) are deterministic baseline intensities that are left unspecified except for some

regularity conditions. In our application the functions αj(t) represent the unknown, time-
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dependent influences of the covariates on the cancellation of contracts.

In the next section we describe estimators for
∫ t

0
α(s)ds and α(t).

3.2 Nelson-Aalen Estimator

An estimator for the integrated baseline intensity B(t) =
∫ t

0
α(s)ds is given by a gener-

alized Nelson-Aalen estimator

B̂(t) :=

∫ t

0

Y−(s)dN(s)

where Y−(t) is a generalized inverse of Y(t), i.e. a p × n matrix satisfying Y−(t)Y(t) =

I, where I is the identity matrix. For simplicity, we will assume that Y(t) has full

rank. Motivated by a least squares argument, Aalen [1] suggested to use Y−(t) =

(YT (t)Y(t))−1YT (t).

Usually, we are not interested in estimating B(t) but in estimating α(t) itself. For this a

kernel estimator can be used. A kernel is a measurable bounded function K : R → R+

which vanishes outside [-1,1] and satisfies
∫ 1

−1
K(t)dt = 1. Let b > 0 and K a kernel then

an estimator for α is given by

α̂(t) =
1

b

∫

T

K

(

t − s

b

)

dB̂(s), t ∈ [b, τ − b].

3.3 Model Checking

Goodness of fit tests are used to examine whether a model is adequate. The following

methods for testing goodness of fit in the Aalen model are based on Gandy & Jensen [9].

Assume that c(t) = (c1(t), ..., cn(t))T is a vector of predictable stochastic processes such

that c(t) is perpendicular to the columns of the matrix of covariates Y(t) in the Aalen

model, i.e. YT (t)c(t) = 0 for all t ≥ 0. Then under some regularity conditions

T̂ (t) :=
1√
n

∫ t

0

cT (s)dN(s)

is a local martingale. The process c(t) can be defined by a projection of some vector d(t)

onto the orthogonal complement of the column space of Y(t). With the corresponding

projection matrix P(t) we get c(t) = P(t)d(t). If Y(t) has full rank we can set P(t) =

I − Y(t)(YT (t)Y(t))−1Y(t).

The tests which are constructed in Gandy & Jensen [9] are used to check the hypothesis

H0 : λ(t) = Y(t)α(t) for some deterministic, bounded, measurable function α : T → R
p,
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which means that Aalen’s model is appropriate. Three different alternative hypotheses

are discussed. In the first hypothesis the intensity of the alternative model is completely

known. The second alternative is that there is an additional covariate. The third alter-

native hypothesis, the Cox model is true, is given by

Hc : λi(t) = λ0(t)Ri(t) exp{β0T
Zi(t)}, i = 1, ..., n

for some β0 and some deterministic, bounded, measurable λ0 : T → [0,∞]

where Z(t) describes the covariates in the Cox model, which do not have to be the same

as in the Aalen model (see 2.1).

Under the hypothesis H0 and some additional assumptions T̂ (t) converges to a mean zero

Gaussian martingale whose variance can be estimated consistently by

[T̂ ](t) =
1

n

∫ t

0

dT (s)P(s) diag(dN(s))P(s)d(s),

where diag(dN(s)) is a diagonal matrix with entries dNi(s), i ∈ {1, ..., n}. Under regu-

larity conditions n−
1

2 T̂ (t) converges uniformly in probability to a process H(t) under the

alternative hypotheses. In the first and third alternative H(t) ≥ 0 and therefore we can

use one-sided tests. The simplest test statistic we can construct is given by

T :=
1

√

[T̂ ](τ)
T̂ (τ)

d→ N (0, 1),

which converges as n → ∞ in distribution to a standard normal random variable. To test

against the hypothesis Hc, in Gandy & Jensen [9] it is suggested to choose d(t) as follows.

Let 0 < t0 < τ and define for some t0 > 0

di(s) :=

{

0 , s ≤ t0

Ri(s) exp{Zi(s)β̂(s−)} , t0 < s ≤ τ,

where β̂(s−) = limu→s

u<s
β̂(u). The estimator β̂(u) is the partial maximum likelihood esti-

mator for Cox’s model which uses only information up to time u, i.e. β̂(u) is the maximizer

at (1) where τ is replaced by u.

4 Dataset

The dataset we use for our analysis emanates from a database provided by a German

insurance company. It contains more than 100 000 private accident insurance contracts
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and for each contract several different attributes of the insurance holder and the insured

person are known. Special features of these contracts are that more than one person

can be insured in a contract and that the insurance holder does not have to be insured

in it. There also exist aggregated covariates like the average insurance sum per insured

person in the contract. Furthermore, attributes like age of the insurance holder, the

annual premium, the duration of the contract, different sums insured, etc. are given.

In total each contract offers about 70 attributes. For our analysis we have transformed

some attributes into numerical covariates and deleted some due to too small frequency,

e.g. the covariate which is 1 if the premium is paid in advance appeared only once. The

cancellation of a contract could only be observed during the period of May 1st, 2002 to

April 30th, 2003. About 91 percent of all contracts were censored meaning that they were

not canceled during this period. Since this dataset is quite big, we reduced our analysis

to a smaller dataset. There we only contemplate contracts belonging to insurance holders

working in similar professions which were 31298 contracts. In our analysis we focused on

43 covariates since some of the covariates were redundant. In the smaller dataset in the

first, second, third and ninth year no contracts have been canceled, which one must have

in mind using the two survival models. Furthermore there are only few contracts which

have a duration longer than 30 years. The longest duration of a contract is given by 44

years.

5 Results

The conclusions we want to present are drawn from the smaller dataset containing 43

covariates. First we analyzed our dataset by using two different variable selection meth-

ods to exclude the least significant covariates. Here we confine ourselves to the forward

selection method since the backward selection method has produced similar results. Con-

ducting the forward selection method in the Cox model we first estimate parameters for

covariates forced into the model (see Krall et al. [11]). Then we compute adjusted χ2-

statistics for each covariate and examine the largest of these statistics. If it is significant

at a 5 percent level the corresponding covariate is added to the model and stays in the

model in all the following steps. In the Aalen model we include as a first covariate in

the forward selection the baseline covariate, i.e. the covariate which is 1 for all contracts

under risk. Then we test the hypothesis H0 as described in Subsection 3.3 against the
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hypothesis that there exists an additional covariate, i.e. we test against all other variables

and include the covariate having the smallest p-value into the model. We stop our selec-

tion when the p-values of all covariates in the test are greater than the level of 5 percent.

The analysis of our dataset yields nearly the same significant covariates by using the for-

ward selection method in both models. In the Cox model as well in the Aalen model the

forward selection methods suggest to include 17 covariates in the models, see Table 1 for

the covariates in the Cox model.

Covariates Description Parameter Standard

Estimate Error

beitrag zw 2 paying the premium every 6 months 0.23833 0.05627

beitrag zw 12 paying the premium every month 0.19082 0.04340

iart 1 paying the annual premium by direct debit -0.43466 0.05085

taetig art 2 employee -0.10646 0.04210

taetig art 3 executive employee -0.26966 0.11709

vp1 stat ta 12 standardized single insurance -0.24778 0.05623

vp1 stat gg 6 risk group B of first ins. person -0.18729 0.05398

vp1 vsu inv unf insurance sum for disability of first ins. person -5.193E-6 1.024E-6

vp1 risk jbeitr risk premium of first ins. person 0.00284 0.00036

vp1 stat geschl 2 first insured person is female 0.08593 0.04808

alter vn age of the insurance holder -0.01330 0.00173

vp vn insurance holder equals first person insured -0.22325 0.05460

vsu rent mean average accident benefits per person insured -0.000365 0.000102

vsu tg1 mean average daily benefits per person insured -0.03044 0.00657

vsu ktg mean average hospital daily benefits per person insured -0.00551 0.00156

dyn dynamic in the contract 0.21613 0.04258

anz er 2 number of adults insured 0.26230 0.05245

Table 1: Parameter Estimation after Forward Selection in the Cox Model
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Figure 1: Martingale Residual plot of the covariate age

Variables like the risk premium, the insurance sums, paying with direct debit show effects

as one would have expected. For example, a higher risk premium leads to an increasing

churn rate. It is apparent that the effect of all different kinds of sums insured is the

same. The intensity of a contract being canceled declines as the insurance sum grows.

Furthermore, insurance holders paying with direct debit are less likely to cancel their

contracts. A closer look at the martingale residuals, following the procedure described in

Section 2.3, reveals that we obtain a nearly linear smoothed scatterplot for all investigated

covariates that are not 0-1 variables except for the one indicating the age of the insurance

holder. Recall that a linear smoothed scatterplot provides evidence that the corresponding

covariate has been introduced into the model adequately. The smoothed plots of the

martingale residuals against the variable age of the insurance holder (alter vn) and against

the variable vsu rent mean are given in the Figures 1 and 2. As Figure 1 shows the plot

of the residuals of the covariate age is nonlinear. Therefore we split the covariate alter vn

and allow a piecewise linear influence of the age in the intervals 0-30, 30-44, 44-62, 62 and

older. Excluding the variable alter vn and including the 4 new variables gives a better

fit. This is established by a likelihood ratio test for which the details are omitted here.

The influence of the age of the insurance holder now varies with the age. The intensity

of cancellation for an insurance holder of ages 0-30 and 44-62 is increasing whereas this

intensity is decreasing for insurance holders of ages 30-44 and 62 and older. After fitting

10



Figure 2: Martingale Residual plot of the covariate vsu rent mean

the model again with a backward and forward selection method the variable alter vn3

(age of an insurance holder between 44-62) does not seem to be significant and is dropped

out of the model.

The Aalen model provides nearly the same trends of the variables as those indicated by the

Cox model. Whenever the parameter estimate of β for a covariate is positive (negative) in

the Cox model, then the estimated integrated intensity B̂(t) of this covariate is increasing

(decreasing). This can be seen for example in the Figures 3 and 4. There the estimated

integrated intensities of the covariates iart 1 and vsu ktg mean are plotted with their

pointwise confidence intervals. Testing goodness of fit of the Aalen model against the

Cox model using the test explained in Subsection 3.3 with t0 = 5 the hypothesis that

Aalen’s model is the true model is rejected at a level of 0.00019. One reason for this could

be the effect arising from the occurence of several events at the same time.

To sum up the results, we can state that several covariates have been found to be of

significant influence. They have been identified by using forward and backward selection

methods. The influence of the covariates can be interpreted in a reasonable way. Even in

the bigger dataset we are able to observe similar parameter estimates for the covariates

in the Cox model. But further investigations are needed to reveal the effect of the same

occurrence times of several events in both models.
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Figure 3: Estimated integrated intensity B̂(t) of iart 1
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Figure 4: Estimated integrated intensity B̂(t) of vsu ktg mean
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