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Motivating Example

A kidney transplant is often the treatment of choice for patients with
end-stage kidney disease

There is a gap between supply and demand for kidney transplantation

About 15-20% of procured kidneys are finally not used, mostly the
so-called marginal kidneys [1].
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Motivating Example

Reliable statistical methods for predicting a patients’ individual risk for
survival after kidney transplantation are of great importance to support

the individual risk-benefit assessment before transplantation

defining individual centers’ and patients’ kidney acceptance criteria

guiding organ allocation policies

making informed use of marginal kidneys

Examples: Eurotransplant Senior Program (ESP), Eurotransplant Rescue
Allocation Program, US Kidney Accelerated Placement project (KAP)
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Motivating Example

Exemplarily predictions derived from data of n ≈ 50.000 donor kidney
receivers
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Censoring and its implications
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Censored obs are missing for classification at some time t

Censored obs hold partial information on survival

Longer survival implies a higher risk for censoring

Censoring is not just missing data, but requires survival analysis
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Censoring and its implications (1)

Discarding censored observations from analyses causes systematic bias

Example

Simple rates:

|{i; i survives t}|
|{i; i not censored before t}|
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Censoring and its implications (2)

Even Kaplan-Meier-Estimates (that consider censoring) can give
implausible results as seen with UNOS data
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Censoring and its implications (2)

1st patient in: Jan 2014, DB closure: Sep 2020 (330 wks)

FU visits are scheduled yearly ⇒ After wk 278 the risk sets reduce to
patients with events
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Censoring and its implications

1st patient in: Jan 2014, DB closure: Sep 2020 (330 wks)

FU visits are scheduled yearly ⇒ After wk 278 the risk sets reduce to
patients with events

Administrative censoring has been added at Jul 2019

When to censor is not always easy to answer [2]
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Regression & Machine Learning for Survival
Prediction

Risk of bias in prediction models for living kidney transplantation [3]

The models were mainly derived by regression

▶ Median number of 3.8 events per candidate predictors
▶ Correcting for optimism infrequently provided - despite of guidelines
▶ 11/29 models were neither internally nor externally validated
▶ Weak strategies for model-building (e.g. screening of predictors)
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Regression & Machine Learning for Survival
Prediction

Overfitting:

Hastie et. al: The Elements of Statistical Learning. Springer
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Regression & Machine Learning for Survival
Prediction

In Machine Learning the risk of overfitting is well-known and rarely
ignored

Example for UNOS data on n=36346 with k=3909 observed events

Cox model Neural Network Trees & Forests

Linear predictor
bT X

95 parameters 3889 parameters Flexible number of
parameters
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Regression & Machine Learning for Survival
Prediction

Correcting for overfitting and optimism is often integrated within the
machine learning algorithm, e.g. by

▶ Penalizing loss functions
▶ Tuning hyperparameters by cross-validation
▶ Bagging with weak learners
▶ Early stopping of the fitting algorithm
▶ Estimating accuracy from out-of-bag data

However: Machine Learning has its own risk of bias by improper
handling of censoring
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Regression & Machine Learning for Survival
Prediction

Discarding censored observations was observed in 9 out of 12 machine
learning applications for predicting kidney graft failure [4]

In regression modeling this is observed infrequently
Potential reason: Software comfort zone?

▶ Decade-long history of survival packages in R
▶ Integration of survival methods into Python scikit-learn since 2020
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Methods comparison

Objective
Comparison of prediction performance for post-transplant survival when
statistical and machine learning methods both consider censoring and
overfitting

Compared methods
▶ Cox regression model with backward variable selection
▶ Cox regression model with Lasso penalization and cross-validated

shrinkage parameter
▶ Random Survival Forest with default tuning parameters
▶ Feed-forward neural network (DeepSurv) with hyperparameter tuning

(inner layers, nodes per layer, drop-out rate)

All methods are trained on a 70% random sample and evaluated on a
30% test sample
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A sketch on statistical learning for event time data

Let T ∗ and C be the time to event and censoring, respectively

T ∗ is (for some subjects) unobserved, only T and D is observed:

T = min(T ∗, C) D = I(T ∗ ≤ C)

Fit a model using T and D only, that minimizes some loss function for
censored data
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The Cox regression model
Parametric model of the hazard function depending on covariate vector x

h(t|x) = lim
∆↓0

P(t ≤ T ∗ < t + ∆ | T ∗ ≥ t, X = x)
∆

= h0(t) exp(bT x)

Log partial likelihood loss function:

LL(b) =
n∑

i=1
di [bT xi − log

( ∑
j∈Ri

exp(bT xj)
)
]

Loss function with Lasso-regularization:

Loss(b) = −LL(b) + λ
p∑

j=1
|bj |
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Methods comparison: Random Survival Forest

General idea: Average the predictions of several weak learners (the trees)

(a) Grow trees from bootstrap
samples and random variable
candidates for splitting

(b) Calculate Nelson-Aalen estimate of
CHF per terminal node K

Ĥb
K (t) =

∑
i∈K ,ti ≤t

di
ni(K )

(c) Predict the CHF per subject by its average
over the trees
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Methods comparison: Feed forward neural network -
DeepSurv

Proportional hazards assumption relaxing linearity and additivity:

h(t|x) = h0(t) exp(ϕw (x))

Predicting ϕw (x) by a neural net with loss-function

Lossλ(w) = −
n∑

i=1
di

[
ϕw (xi) − log

( ∑
j∈Ri

exp(ϕw (xj))
)]

+ λ||w ||22

For prediction use Ĥ(t|x) := Ĥ0(t) exp(ϕ̂w (x)) with Breslow estimator
Ĥ0(t)
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Methods comparison

Non-prop. Non-linear Effect
hazards predictors estimation

Cox Backward - - ✓

Cox Lasso - - ✓

Random Survival Forest ✓ ✓ -

Neural Network - ✓ -
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Methods comparison: Data
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Methods comparison: Data
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Methods comparison: Results - Discrimination

Consider prediction for patient A is worse than for patient B
▶ A dies before B: concordant pair
▶ B dies before A: discordant pair
▶ censoring masks the comparison: uninformative pair

C-Index: Proportion of concordant among all informative pairs of
patients

Cox Cox Random Neural
Backward Lasso Forest(1) Network

0.644 0.643 0.619 0.640

(1) based on OOB data and with score ϕ defined as mean CHF
over observed event times
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Methods comparison: Results - Accuracy

Squared error of predicted probability to survive time t, Ŝ(t)
▶ Patient survives t: (1 − Ŝ(t))2

▶ Patient dies before t: (0 − Ŝ(t))2

▶ Censoring masks information: Represented by other patients

Mean Squared Error (Brier Score) over time:
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▶ Patient dies before t: (0 − Ŝ(t))2
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Methods comparison: Results - Accuracy
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Methods comparison: Results - Calibration
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Methods comparison: Summary

Random Survival Forest showed poorest prediction performance -
potentially by skipping hyperparameter tuning

Only slight differences between Cox Regression and Neural Network
Potential reasons:

▶ Machine Learning needs more data
▶ Data needs larger models
▶ Negligible non-linear and non-additive effects
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Summary

Overfitting is not a problem of machine learning only

Censoring has a long tradition in classical statistics, but is sometimes
less carefully addressed in machine learning

Systematic methods’ comparisons are required to inspect the "promise
of machine learning" [5]
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