

SQLDF: SQL für R-Einsteiger leicht gemacht

30-Mar-2023

Content

Introduction

The package SQLDF

Connection to data base

Coding differences and similarities

Timing comparison

Conclusion

PROC SQL vs. SQLDF

SQLDF vs. traditional R

Introduction

Effective data processing → SQL queries

Include SQL queries in other languages

- SAS (PROC SQL)
 - Most common way to use SQL queries in clinical context
- R (SQLDF)
 - Growing popularity due to shift to open source programming
 - Easy way for traditional SAS users to perform SQL queries in R

The package sqldf

R-package

Install with install.packages('sqldf')

Functions included in Package:

read.csv.sql

→ Read file filtered by SQL

read.csv2.sql

→ Read file filtered by SQL

sqldf

→ SQL select on data frames

Reference: https://www.rdocumentation.org/packages/sqldf/versions/0.4-11

Connection to database

When SQL query is executed, a data base (DB) is built in the backend

Default:

- PROC SQL: internal DB
- SQLDF: builds SQLite DB

Pay attention on which DB the connection is built, because there are some differences in coding.

Coding differences and similarities

SAS

- No need for package
- Create new table with statement "create table ... as"
- SQL statement in one data step

R

```
install.packages("sqldf")
library(sqldf)

new_table <- sqldf("select * from old_table")</pre>
```

- Need to install and load package "sqldf"
- Create new table with assignment ("<-" or "=")
- SQL statement in parenthesis and quotation mark

Select, where, order by

randomdf

•	fruit [‡]	number [‡]	name [‡]	years [‡]
1	banana	4	Voldemort	2
2	apple	2	Hermione	16
3	orange	5	Harry	73
4	banana	2	Ron	78
5	apple	3	Hermione	47
6	apple	5	Dumbledore	57
7	banana	6	Ron	76
8	apple	2	Hermione	26
9	orange	3	Harry	60
10	orange	1	Ron	14

^	fruit [‡]	number [‡]	years [‡]
1	apple	3	47
2	apple	2	26
3	apple	2	16
4	banana	2	78
5	banana	4	2
6	orange	3	60
7	orange	1	14

(inner) join cities

countries

*	ID [‡]	country_name [‡]
1	1	Germany
2	2	Italy
3	3	France

•	zip [‡]	city_name	country_id	‡
1	10713	Berlin		1
2	60329	Frankfurt		1
3	75001	Paris		3
4	1030	Vienna		4

```
proc sql;
```

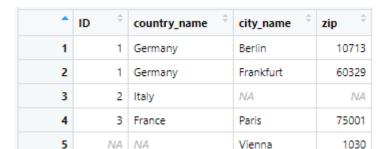
```
select a.ID, a.country_name, b.city_name, b.zip
from countries as a
inner join cities as b
on a.ID = b.country_id;
```


sqldf("select a.ID, a.country_name, b.city_name, b.zip from countries as a inner join cities as b on a.ID = b.country_id")

^	ID [‡]	country_name	city_name [‡]	zip [‡]
1	1	Germany	Berlin	10713
2	1	Germany	Frankfurt	60329
3	3	France	Paris	75001

Full (outer) join

countries


•	ID [‡]	country_name [‡]
1	1	Germany
2	2	Italy
3	3	France

cities

*	zip [‡]	city_name $^{\scriptsize \scriptsize $	country_id [‡]
1	10713	Berlin	1
2	60329	Frankfurt	1
3	75001	Paris	3
4	1030	Vienna	4

Missing values

	ID	country_name	city_name	zip
1	1.0000000000000000	Germany	Berlin	10713.000000000000
2	1.0000000000000000	Germany	Frankfurt	60329.00000000000
3	2.0000000000000000	Italy		
4	3.000000000000000	France	Paris	75001.00000000000
5			Vienna	1030.00000000000

```
country name
                      city_name
 1 Germany
                      Berlin
                                      10713
                                      60329
 1 Germany
                      Frankfurt
 2 Italy
                                        NA
 3 France
                      Paris
                                      75001
NA NA
                      Vienna
                                       1030
```


^	country_name	city_name [‡]
1	Germany	Berlin
2	Germany	Frankfurt
3	France	Paris

Although missing values are displayed differently, "is not NULL" leads to the same outcome

Text operators

randomdf

^	fruit [‡]
1	banana
2	apple
3	orange
4	banana
5	apple
6	apple
7	banana
8	apple
9	orange
10	orange

```
sqldf("select fruit
from randomdf
where fruit like 'B%'
or fruit like '%le'")
```

```
fruit

1 apple
2 apple
3 apple
4 apple
```

```
fruit

fruit

banana

apple

banana

apple

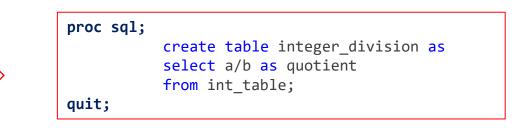
apple

banana

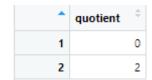
apple

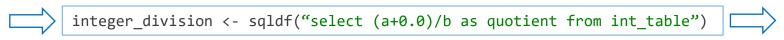
banana

apple
```


Note: SQLDF is not case sensitive!

Integer division leads to integer value in R


^	a	b [‡]
1	1	2
2	2	1



	quotient
1	0.5
2	2

>	<pre>integer_division <- sqldf("select a/b as quotient from int_table")</pre>	ヘレ

In R we need to typecast integer to float to perform a real division

Aggregat functions

Aggregate functions work the same way, but unlike in PROC SQL, the new variables do not need to be renamed in SQLDF. Caution: the function calculating standard deviation is called differently.

	fruit	_TEMG001	_TEMG002	_TEMG003	_TEMG004	_TEMG005	_TEMG006
1	apple	36.5	16	57	4	18.806027403	146
2	banana	52	2	78	3	43.312815655	156
3	orange	49	14	73	3	31	147

^	fruit [‡]	avg(years)	min(years)	max(years) [‡]	count(fruit)	stdev(years)	sum(years)
1	apple	36.5	16	57	4	18.80603	146
2	banana	52.0	2	78	3	43.31282	156
3	orange	49.0	14	73	3	31.00000	147

Easy column renaming in R

new_df <- sqldf("select column_a as a from df")</pre>

Column name changes

new_df <- sqldf("select column_a a from df")</pre>

a	÷
	1
	2
	3
	4
	1
	2
	3
	4
	a

Only changes column label but not column name

 column_A

 1
 1.000000000000000

 2
 2.000000000000000

 3
 3.00000000000000

 4
 4.00000000000000

 5
 1.00000000000000

 6
 2.00000000000000

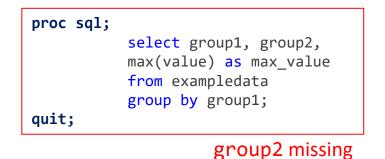
 7
 3.000000000000000

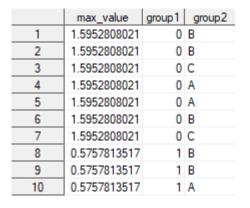
 8
 4.0000000000000000000

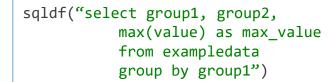
Can be solved by

options nolabel;

Leads to error


62 proc sql; 63 create table new_df as 64 select column_a a




Missing grouping

exampledata

*	value [‡]	group1 [‡]	group2 [‡]
1	-0.6264538	1	В
2	0.1836433	0	В
3	-0.8356286	1	В
4	1.5952808	0	С
5	0.3295078	0	Α
6	-0.8204684	0	В
7	0.4874291	0	Α
8	0.7383247	0	С
9	0.5757814	1	Α
10	-0.3053884	0	В

*	max_value $^{\scriptsize \scriptsize $	group1 [‡]	group2 [‡]
1	1.5952808	0	С
2	0.5757814	1	Α

group2 missing

Timing comparison

- Used datasets from CDISC Pilot exampledata
 - LB (23 variables, 59580 observations)
 - SUPPLB (10 variables, 64403 observations)

Timing comparison

PROC SQL vs SQLDF

Function	PROC SQL	SQLDF
Full join	23.96 sec	444.83 sec (= 7.4min)
Inner join	24.88 sec	127.79 sec (=2.1min)
Order by	0.11 sec	0.34 sec
Where	0.05 sec	0.33 sec
Aggregate functions	0.05 sec	0.22 sec
Filter by text operator	0.10 sec	0.30 sec

Timing comparison

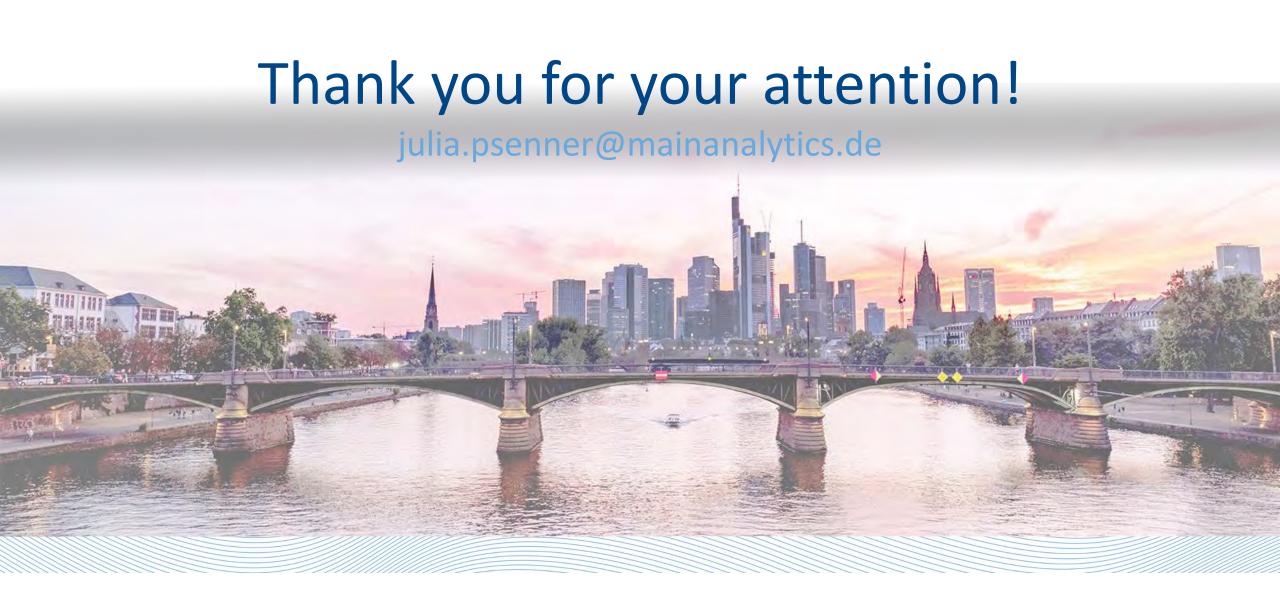
SQLDF vs traditional R

SQLDF-Function	Time	Traditional R-Function	Time
Full join	444.83 sec	merge {base}	164.40 sec
Inner join	127.79 sec	inner_join {dplyr}	15.85 sec
Order by	0.46 sec	arrange {dplyr}	0.13 sec
Where	0.46 sec	filter {dplyr}	0.28 sec
Aggregate functions	0.25 sec	summarize {dplyr}	0.25 sec
Filter by text operator	0.31 sec	filter/str_detect {stringr}	0.22 sec

Conclusion

SQLDF facilitates the switch to R for traditional SAS users

There are some coding differences to be considered


Consider which database management system SQLDF is using in the backend

Performance is better in PROC SQL

There are better ways to process data in R

